Skip to main content

Mycosynthesized Nanoparticles: Role in Food Processing Industries

  • Chapter
  • First Online:
Fungal Nanobionics: Principles and Applications

Abstract

Green synthesis of nanoparticles (NPs) is an evolving branch of nanotechnology. The use of fungi for the synthesis of NPs is referred to as mycosynthesis of metal NPs. Fungal endophytes have been recognized as important sources of a variety of structurally novel active secondary metabolites with anticancer, antimicrobial, and other biological activities. This mode of synthesis of metal nanoparticles is gaining more importance owing to its simplicity, rapid rate of synthesis of NP of attractive and diverse morphologies, and elimination of elaborate maintenance of cell cultures and eco-friendliness. Presently, the researchers are looking into the development of cost-effective procedures for producing reproducible, stable, and biocompatible metal NPs using fungal cultures. The present chapter is an exhaustive overview that assesses the role of fungi in the synthesis of nanoparticles, the mechanism involved in the synthesis, the effect of different factors on the reduction of metal ions in developing low-cost techniques for the synthesis, and recovery of nanoparticles. Finally, the application of nanoparticles in food processing industries, i.e., antimicrobial mechanisms, etc., has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109

    Article  PubMed  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003a) Intracellular synthesis of gold nanoparticles by a novel alkali tolerant Actinomycete, Rhodococcus species. Nanotechnology 14:824–828

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati R, Khan MI, Kumar R, Sastry M (2003b) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic Actinomycete, thermomonospora sp. Langmuir 19(8):3550–3553

    Article  CAS  Google Scholar 

  • Ali ME, Hashim U, Mustafa S, Che Man YB, Islam KN (2012) Gold nanoparticle sensor for the visual detection of pork adulteration in meatball formulation. J Nanomater 10:36–07

    Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  PubMed  CAS  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Azizi S, Ahmad MB, Namvar F, Mohamad R (2014) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett 116:275–277

    Article  CAS  Google Scholar 

  • Bai YX, Li YF, Yang Y, Yi LX (2006) Covalent immobilization of triacylglycerol lipase onto functionalized nanoscale SiO2 spheres. Process Biochem 41:770–777

    Article  CAS  Google Scholar 

  • Bandyopadhyay S, Peralta-Videa JR, Hernandez-Viezcas JA, Montes MO, Keller AA, Gardea-Torresdey L (2012) Microscopic and spectroscopic methods applied to the measurements of nanoparticles in the environment. Appl Spectrosc Rev 47:180–206

    Article  CAS  Google Scholar 

  • Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305

    Article  CAS  Google Scholar 

  • Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahamad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15(26):2583–2589

    Article  CAS  Google Scholar 

  • Berekaa MM (2015) Nanotechnology in food industry; advances in food processing, packaging and food safety. Int J Curr Microbiol App Sci 4(5):345–357

    CAS  Google Scholar 

  • Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya D, Gupta RK (2005) Nanotechnology and potential of microorganisms. Crit Rev Biotechnol 25:199–204

    Article  PubMed  CAS  Google Scholar 

  • Bolea E, Laborda F, Castillo JR (2010) Metal associations to micro particles, nano colloids and macromolecules in compost leachates: size characterization by asymmetrical flow field-flow fractionation coupled to ICP-MS. Anal Chem Acta 661:206–214

    Article  CAS  Google Scholar 

  • Bouby M, Geckeis H, Manh TN, Yun J-IL, Dardenne K, Schafer T, Walther C, Kim JI (2004) Laser-induced breakdown detection combined with asymmetrical flow field flow fractionation: application to iron oxi/hydroxide colloid characterization. J Chromatogr A 10:40–97

    Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and metallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Bio Interfaces 83:42–48

    Article  CAS  Google Scholar 

  • Castro-Longoria E, Moreno-Velásquez SD, Vilchis-Nestor AR, Arenas-Berumen E, Avalos-Borja M (2012) Production of platinum nanoparticles and nano aggregates using Neurospora crassa. J Microbiol Biotechnol 22:1000–1004

    Article  PubMed  CAS  Google Scholar 

  • Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Lett Appl Microbiol 37:105–110

    Article  PubMed  CAS  Google Scholar 

  • Chertok B, Moffat BA, David AE, Yu F, Bargemann C, Ross BD, Yang VC (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29(4):487–496

    Article  PubMed  CAS  Google Scholar 

  • Da Silva BF, Perez S, Gardinalli P, Singhal RK, Mozeto AA, Barcelo D (2011) Analytical chemistry of metallic nanoparticles in natural environments. Trends Anal Chem 30:528–540

    Article  CAS  Google Scholar 

  • Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199

    Article  PubMed  CAS  Google Scholar 

  • Das SK, Das AR, Guha AK (2010) Microbial synthesis of multi shaped gold nano structures. Small 6:1012–1021

    Article  PubMed  CAS  Google Scholar 

  • Deligiannakis Y, Sotiriou GA, Pratsinis SE (2012) Antioxidant and antiradical SiO2 nanoparticles covalently functionalized with gallic acid. ACS Appl Mater Interfaces 4:6609–6617

    Article  PubMed  CAS  Google Scholar 

  • Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi. Curr Trends Appl 32:49–73

    CAS  Google Scholar 

  • Durán N, Marcato PD, De S, Gabriel IH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nano Bechnol 3:203–208

    Article  CAS  Google Scholar 

  • Durán N, Marcato PD, Alves OL, de Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nano Biotechnol 3:1–8. https://doi.org/10.1186/1477-3155-3-8

    Article  Google Scholar 

  • Farre M, Sanchıs J, Barcelo D (2011) Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. Trends Anal Chem 30:517–527

    Article  CAS  Google Scholar 

  • Gade A, Ingle A, Whiteley C, Rai M (2010) Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett 32:593–600

    Article  PubMed  CAS  Google Scholar 

  • Gaikwad S, Birla SS, Ingle AP, Gade AK, Marcato PD, Rai MK, Duran D (2013) Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. J Braz Chem Soc 24:1974–1982

    CAS  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole: nanomedicine. Nano Technol Biol Med 5:382–386

    Article  CAS  Google Scholar 

  • Gao L, Zhang D, Chen M (2008) Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res 10:845–862

    Article  CAS  Google Scholar 

  • Gelperina S, Kisich K, Iseman SD, Heifets L (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172:1487–1490

    Article  PubMed  PubMed Central  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  • Giddings JC (1993) Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. Science 260:1456–1465

    Article  PubMed  CAS  Google Scholar 

  • Glomm WR (2005) Functionalized gold nanoparticles for applications in bionanotechnology. J Dispers Sci Technol 26:389–414

    Article  CAS  Google Scholar 

  • Gopinath PM, Narchonai G, Dhanasekaran D, Ranjani A, Thajuddin N (2015) Mycosynthesis, characterization and antibacterial properties of AgNPs against multidrug resistant (MDR) bacterial pathogens of female infertility cases. Asian J Pharm Sci 10:138–145

    Article  Google Scholar 

  • Gurunathan S, Lee K-J, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH (2009) Anti-angiogenic properties of silver nanoparticles. Biomaterials 30:6341–6350

    Article  PubMed  CAS  Google Scholar 

  • Hassellov M, Readman JW, Ranville JF, Tiede K (2008) Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17:344

    Article  PubMed  CAS  Google Scholar 

  • He X, Hwang HM (2016) Nanotechnology in food science: functionality, applicability, and safety assessment. J Food Drug Anal 24:671–681

    Article  PubMed  CAS  Google Scholar 

  • Hergt R, Dutz R (2007) Magnetic particle hyperthermia biophysical limitations of a visionary tumour therapy. J Magn Mag Mater 311(1):187–192

    Article  CAS  Google Scholar 

  • Hergt R, Hiergeist R, Zeisberger M, Schuler D, Heyen U, Hilger I, Kaiser WA (2005) Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J Magn Magn Mater 1:80–86

    Article  CAS  Google Scholar 

  • Inbaraj BS, Chen BH (2016) Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. J Food Drug Anal 24:15–28

    Article  CAS  Google Scholar 

  • Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomedicine Nanotechnol 4(2):10–17

    Article  CAS  Google Scholar 

  • Ingle A, Gade A, Pierrat S, Sönnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    Article  CAS  Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3(2):635–641

    Article  PubMed  CAS  Google Scholar 

  • Jeevan P, Ramya K, Edith R (2012) Extracellular biosynthesis of silver nanoparticles by culture supernatant of Pseudomonas aeruginosa. Indian J Biotechnol 11:72–76

    CAS  Google Scholar 

  • Jha AK, Prasad K (2010) Ferroelectric BaTiO3 nanoparticles: biosynthesis and characterization. Colloids Surf B 75(1):330–334

    Article  CAS  Google Scholar 

  • Joerger R, Klaus T, Olsson E, Granqvist CG (1999) Spectrally selective solar absorber coatings prepared by a biomimetic technique. Proc Soc Photo-Opt Instrum Eng 3789:2–7

    CAS  Google Scholar 

  • Joshi M, Bhatacharyya A, Ali SW (2008) Characterization techniques for nanotechnology applications in textiles. Indian J Fibre Text Res 33:304–317

    CAS  Google Scholar 

  • Juibari MM, Abbasalizadeh S, Jouzani GS, Noruzi M (2011) Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Mater Lett 65(6):1014–1017

    Article  CAS  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel M, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces 71:133–137

    Article  PubMed  CAS  Google Scholar 

  • Kumar SA, Ansary AA, Ahmad A, Khan MI (2007) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J Biomed Nanotechnol 3:190–194

    Article  CAS  Google Scholar 

  • Lead JR, Wilkinson KJ (2006) Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem 3:159–171

    Article  CAS  Google Scholar 

  • Li X, Li W, Jiang Y, Ding Y, Yun J, Tang Y, Zhang P (2011) Effect of nano-ZnO-coated active packaging on quality of fresh-cut ‘Fuji’ apple. Int J Food Sci Technol 46:1947–1955

    Article  CAS  Google Scholar 

  • Lin YH, Chen SH, Chuang YC, Lu YC, Shen TY, Chang CA, Lin CS (2008) Disposable amperometric immunosensing strips fabricated by Au nanoparticles-modified screen-printed carbon electrodes for the detection of food borne pathogen Escherichia coli O157:H7. Biosens Bioelectron 23:1832–1837

    Article  PubMed  CAS  Google Scholar 

  • Luykx DM, Peters RJ, Van Ruth SM, Bousmeester H (2008) A review of analytical methods for the identification and characterization of nano delivery systems in food. J Agric Food Chem 56(18):8231–8247

    Article  PubMed  CAS  Google Scholar 

  • Magnuson BA, Jonaitis TS, Card JW (2011) A brief review of the occurrence, use, and safety of food-related nanomaterials. J Food Sci 76:126–133

    Article  CAS  Google Scholar 

  • Mahdavi M, Namvar F, Ahmad MB, Mohammad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18:954–5964

    Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Article  PubMed  CAS  Google Scholar 

  • Mao X, Yang L, Su XL, Li Y (2006) A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosens Bioelectron 21:1178–1185

    Article  PubMed  CAS  Google Scholar 

  • Meyer V (2008) Genetic engineering of filamentous fungi progress, obstacles and future trends. Biotechnol Adv 26:177–185

    Article  PubMed  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R et al (2001a) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M (2001b) Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588

    Article  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem Bio Chem 3:461–463

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008a) Green synthesis of highly stabilized nanocrystalline silver particles by a nonpathogenic and agriculturally important fungus Trichoderma asperellum. Nanotechnology 19:75–103

    Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi A, Kale SP (2008b) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:1–7

    Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156(1–2):1–13

    Article  PubMed  CAS  Google Scholar 

  • Philip D (2009) Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta A Mol Biomol Spectrosc 73:374–381

    Article  PubMed  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles 2014(2014):963961. https://doi.org/10.1155/2014/963961

    Google Scholar 

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer International Publishing (ISBN: 978-3-319-42989-2)

    Google Scholar 

  • Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer International Publishing (ISBN 978-3-319-68423-9)

    Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomedicine Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Punjabi K, Choudhary P, Samanta L, Mukherjee S, Vaidyal S, Chowdhary A (2015) Biosynthesis of nanoparticles: a review. Int J Pharm Sci Rev Res 30(1):219–226

    Google Scholar 

  • Pycke BFG, Benn TM, Herckes P, Westerhoff P, Halden RU (2011) Strategies for quantifying C60 fullerenes in environmental and biological samples and implications for studies in environmental health and ecotoxicology. Trends Anal Chem 30:44–57

    Article  CAS  Google Scholar 

  • Rai M, Yadav P, Bridge P, Gade A (2009a) Myco nanotechnology (NT), a new and emerging science. In: Bridge R (ed) Applied mycology. CAB International, London, pp 258–267

    Chapter  Google Scholar 

  • Rai M, Yadav A, Gade A (2009b) Silver nanoparticles as a new generation of antimicrobials. Biotech Adv 27:76–83

    Article  CAS  Google Scholar 

  • Ramaratnam K, Iyer SK, Kinnan MK, Chumanov G, Brown PJ, Luzinov I (2008) Ultrahydrophobic textiles using nanoparticles: lotus approach. J Eng Fiber Fabr 3:1–14

    CAS  Google Scholar 

  • Rhim JW, Hong SI, Park HM, Ng PKW (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822

    Article  PubMed  CAS  Google Scholar 

  • Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489

    Article  PubMed  CAS  Google Scholar 

  • Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100:501–504

    Article  PubMed  CAS  Google Scholar 

  • Sarkar R, Kumbhakar P, Mitra AK (2010) Green synthesis of silver nanoparticles and its optical properties. Dig J Nanomater Biostruct 5:491–496

    Google Scholar 

  • Sastry M, Ahmad A, Islam Khan M, Kumar (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Schimpf ME, Caldwell K, Giddings JC (eds) (2000) Field-flow fractionation handbook. Wiley-Interscience, New York

    Google Scholar 

  • Sekhon BS (2010) Food nanotechnology- an overview. Nanotechnol Sci Appl 3:1–15

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shakibaie M, Khorramizadeh MR, Faramarzi MA, Sabzevari O, Shahverdi AR (2010) Biosynthesis and recovery of selenium nanoparticles and the effects on matrix metalloproteinase-2 expression. Biotechnol Appl Biochem 56:7–15

    Article  PubMed  CAS  Google Scholar 

  • Sinha N, Ma J, Yeow JTW (2006) Carbon nanotube-based sensors. Nanosci Nanotechnol l(6):573–590

    Article  CAS  Google Scholar 

  • Sonawane SK, Arya SS, LeBlanc JG, Jha N (2014) Use of nanomaterials in the detection of food contaminants. Eur J Nutr Food Saf 4(4):301–317

    Article  Google Scholar 

  • Tang D, Tang J, Su B, Chen G (2011) Gold nanoparticles-decorated amine-terminated poly(amidoamine) dendrimer for sensitive electrochemical immunoassay of brevetoxins in food samples. Biosens Bioelectron 26:2090–2006

    Article  PubMed  CAS  Google Scholar 

  • Tiede K, Boxall AB, Tear SP, Lewis J, David H, Hassellov M (2008) Detection and characterization of engineered nanoparticles in food and the environment- a review. Food Addit Contam A Chem Anal Control Expo Risk Assess 25(7):795–821

    Article  CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  PubMed  CAS  Google Scholar 

  • Waghmare SS, Deshmukh AM, Kulkarni SW, Oswaldo LA (2011) Biosynthesis and characterization of manganese and zinc nanoparticles. Univ J Environ Res Technol 1:64–69

    CAS  Google Scholar 

  • Wesley SJ, Raja P, Sundar Raj AA, Tiroutchelvamae D (2014) Review on- nanotechnology applications in food packaging and safety. Int J Eng Res 3(11):645–651

    Article  Google Scholar 

  • Williams A, Varela E, Meehan E, Tribe K (2002) Characterisation of nanoparticulate systems by hydrodynamic chromatography. Int J Pharm 242:295–299

    Article  PubMed  CAS  Google Scholar 

  • Xiang L, Bin W, Huali J et al (2007) Bacterial magnetic particles (BMPs)-PEI as a novel and efficient non-viral gene delivery system. J Gene Med 9(8):679–690

    Article  PubMed  CAS  Google Scholar 

  • Xie J, Lee JY, Wang DIC, Ting YP (2007) High-yield synthesis of complex gold nanostructures in a fungal system. J Phys Chem C111:16858–16865

    Google Scholar 

  • Yadav L, Tripathi RM, Prasad R, Pudake RN, Mittal J (2017) Antibacterial activity of Cu nanoparticles against E. coli, Staphylococcus aureus and Pseudomonas aeruginosa. Nano Biomed Eng 9(1):9–14. https://doi.org/10.5101/nbe.v9i1.p9-14

    Article  CAS  Google Scholar 

  • Zhang X, Yan S, Tyagi RD, Surampalli RY (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82:489–494

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy, L., Bera, D., Adak, S. (2018). Mycosynthesized Nanoparticles: Role in Food Processing Industries. In: Prasad, R., Kumar, V., Kumar, M., Wang, S. (eds) Fungal Nanobionics: Principles and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-8666-3_12

Download citation

Publish with us

Policies and ethics