Skip to main content

Mathematical Formulas for All PrP Peptides’ Cross-β Structures

  • Chapter
  • First Online:
Molecular Dynamics Analyses of Prion Protein Structures

Part of the book series: Focus on Structural Biology ((FOSB,volume 10))

  • 617 Accesses

Abstract

PrP has two regions: unstructured region PrP(1–120) and structured region PrP(119–231). In the structured region, there are many segments which have the property of amyloid fibril formation. By theoretical calculations, PrP(126–133), PrP(137–143), PrP(168–176), PrP(170–175), PrP(177–182), PrP(211–216) have the amyloid fibril forming property. PrP(142–166) has a X-ray crystallography experimental β-hairpin structure, instead of a pure cross-β amyloid fibril structure; thus we cannot clearly find it by our theoretical calculations. However, we can predict that there must be a laboratory X-ray crystal structure in PrP(184–192) segment that will be produced in the near future. The experiments of X-ray crystallography laboratories are agreeing with our theoretical calculations. This article summarized mathematical formulas of prion amyloid fibril cross-β structures of all the above PrP segments currently listed in the Protein Data Bank. There must be a laboratory X-ray crystal structure in PrP(184–192) segment that will be produced in the near future. The peptide PrP(113–120) (i.e. the AGAAAAGA palindrome of PrP) has no structures known, but is an inhibitor or blocker to control the formation of prion diseases. At the end of this Chapter we build an AGAAAAGA model and then do QM studies for it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apostol MI, Perry K, Surewicz WK (2013) Crystal structure of a human prion protein fragment reveals a motif for oligomer formation. J Am Chem Soc 135(28):10202–10205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foresman JB, Frisch AE (2015) Exploring chemistry with electronic structure methods, 3rd edn. Gaussian Inc., Wallingford. ISBN:978–1–935522–03–4

    Google Scholar 

  • Gallagher-Jones M, Glynn C, Boyer DR, Martynowycz MW, Hernandez E, Miao J, Zee CT, Novikova IV, Goldschmidt L, McFarlane HT, Helguera GF, Evans JE, Sawaya MR, Cascio D, Eisenberg DS, Gonen T, Rodriguez JA (2018) Sub-ångström cryo-EM structure of a prion protofibril reveals a polar clasp. Nat Struct Mol Biol 25(2):131–134

    Article  CAS  PubMed  Google Scholar 

  • Koyfman AY, Appavu R, Sheller S, Rudra JS (2015) Self-assembly of heterochiral peptides with varied sequence patterns. http://2015.biomaterials.org/sites/default/files/abstracts/524.pdf

  • Kozin SA, Bertho G, Mazur AK, Rabesona H, Girault JP, Haertlé T, Takahashi M, Debey P, Hoa GH (2001) Sheep prion protein synthetic peptide spanning helix 1 and β-strand 2 (residues 142–166) shows β-hairpin structure in solution. J Biol Chem 276(49):46364–46370

    Article  CAS  PubMed  Google Scholar 

  • Krishnayan B, Rajagopal A, Raghothama S, Shamala N, Balaram P (2012) β-turn analogues in model aβ-hybrid peptides: structural characterization of peptides containing β 2, 2Ac6c and β 3, 3Ac6c residues. Chem Asian J 7(7):1671–1678

    Article  CAS  Google Scholar 

  • Raghavender US, Bhaswati B, Indranil S, Rajagopal A, Shamala N, Balaram P (2011) Entrapement of a water wire in a hydrophobic peptide channel with an aromatic lining. J Phys Chem B 115(29):9236–9243

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal A, Aravinda S, Raghothama S, Shamala N, Balaram P (2011) Chain length effects on helix-hairpin distribution in short peptides with Aib-DAla and Aib-Aib segments. Biopolymers (Pept Sci) 96(6):744–756

    Article  CAS  Google Scholar 

  • Rajagopal A, Aravinda S, Raghothama S, Shamala N, Balaram P (2012) Aromatic interactions in model peptide β-hairpins: ring current effects on proton chemical shifts. Biopolymers (Pept Sci) 98(3):185–194

    Article  CAS  Google Scholar 

  • Rajagopal A, Charles BC, Alexey YK, Joshua DS, Frederick JK, Andrew Z, Jai SR (2015) Enhancing the magnitude of antibody responses through biomaterial stereochemistry. ACS Biomater Sci Eng 1(7):601–609

    Article  CAS  Google Scholar 

  • Rubinov AM (2000) Abstract convexity and global optimization. Kluwer Academic Publishers, Dordrecht. ISBN:978–1–4419–4831–1

    Google Scholar 

  • Rudra JS, Ding Y, Neelakantan H, Ding CY, Appavu R, Stutz SJ, Snook JD, Chen HY, Cunningham KA, Zhou J (2016) Suppression of cocaine-evoked hyperactivity by self adjuvanting and multivalent peptide nanofiber vaccines. ACS Chem Neurosci 7(5):546–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJ, McFarlane HT, Madsen AØ, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447(7143):453–457

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Lee SJ, Yee VC (2015) Crystal structures of polymorphic prion protein β1 peptides reveal variable steric zipper conformations. Biochemistry 54(23):3640–3648

    Article  CAS  PubMed  Google Scholar 

  • Zhang JP (2011a) Practical global optimization computing methods in molecular modelling: for atomic-resolution structures of amyloid fibrils. LAP LAMBERT Academic Publishing. ISBN:978–3–8465–2139–7

    Google Scholar 

  • Zhang JP (2011d) Optimal molecular structures of prion AGAAAAGA amyloid fibrils formatted by simulated annealing. J Mol Model 17(1):173–179

    Article  CAS  PubMed  Google Scholar 

  • Zhang JP (2015) Molecular structures and structural dynamics of prion proteins and prions: mechanism underlying the resistance to Prion diseases. Springer, Dordrecht. ISBN:978–94–017–7317–1

    Google Scholar 

  • Zhang JP, Zhang Y (2013) Molecular dynamics studies on 3D structures of the hydrophobic region PrP(109–136). Acta Biochim Biophys Sin (Shanghai) 45(6):509–519

    Article  CAS  Google Scholar 

  • Zhang JP, Wang F (2014) A survey and a molecular dynamics study on the (central) hydrophobic region of prion proteins. Curr Pharm Biotechnol 15(11):1026–1048

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Chen H, Lai L (2007) Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential. Bioinformatics 23(17):2218–2225

    Article  CAS  PubMed  Google Scholar 

  • Zhang JP, Gao DY, Yearwood J (2011a) A novel canonical dual computational approach for prion AGAAAAGA amyloid fibril molecular modeling. J Theor Biol 284(1):149–157

    Article  CAS  PubMed  Google Scholar 

  • Zhang JP, Sun J, Wu C (2011b) Optimal atomic-resolution structures of prion AGAAAAGA amyloid fibrils. J Theor Biol 279(1):17–28

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J. (2018). Mathematical Formulas for All PrP Peptides’ Cross-β Structures. In: Molecular Dynamics Analyses of Prion Protein Structures. Focus on Structural Biology, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-10-8815-5_15

Download citation

Publish with us

Policies and ethics