Skip to main content

Physics-of-Failure Approach for Electronics

  • Chapter
  • First Online:
Risk-Based Engineering

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

  • 1497 Accesses

Abstract

Physics-of-failure (PoF) approach is integral part of IRBE as in this approach reliability of the component and systems is predicted based on scientific models for identification of applicable failure mechanism and evaluation degradation to arrive at time to failure. The traditional statistical approach for reliability evaluation can predict the probability of failure but incapable of providing information on instant of failure. The physics-of-failure approach as part of prognostics framework can predict failure in advance with acceptable level of uncertainty. PoF as an approach is extensively being applied for electronics reliability; hence, this chapter deals with PoF approach to electronics.

Ask the right questions and nature will open the doors to her secrets.

Sir C. V. Raman

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.R. Tummala, SOP: What is it and why? A new microsystem-integration technology paradigm-Moore’s law for system integration of minimized convergent systems of the next decades. IEEE Trans. Adv. Packag. 27(2), 241–249 (2004)

    Article  Google Scholar 

  2. T. Simonite, Moore’s law is dead. Now what? MIT Technology Review (2016). https://www.technologyreview.com/s/601441/moores-law-is-dead-now-what/

  3. Military Handbook, Reliability prediction of electronic equipment. MILHDBK-217F, Department of Defense, Washington, DC (1991)

    Google Scholar 

  4. M. Pecht, W.C. Kang, A critique of MIL-Hdbk-217E reliability prediction methods. IEEE Trans. Reliab. 37(5), 453–457 (1988)

    Article  Google Scholar 

  5. P. Charpenel, P. Cavernes, V. Casanovas, J. Borowski, J.M. Chopin, Comparison between field reliability and new prediction methodology on avionics embedded electronics. Microelectron. Reliab. 38(6), 1171–1175 (1998)

    Article  Google Scholar 

  6. M. Nilsson, Ö. Hallberg, A new reliability prediction model for telecommunication hardware. Microelectron. Reliab. 37(10), 1429–1432 (1997)

    Article  Google Scholar 

  7. JEP122H, Failure Mechanisms and Models for Semiconductor Devices (JEDEC Solid State Technology Association, 2016)

    Google Scholar 

  8. J.W. McPherson, Reliability Physics and Engineering (Springer, New York, 2010), p. 171

    Book  Google Scholar 

  9. K.C. Kapur, M. Pecht, Reliability Engineering (Wiley, New York, 2014)

    Book  Google Scholar 

  10. P. Singh, P. Viswanadham, Failure Modes and Mechanisms in Electronic Packages (Springer Science & Business Media, 2012)

    Google Scholar 

  11. R. Darveaux, K. Banerji, A. Mawer, G. Dody, Reliability of plastic ball grid array assembly, in Ball Grid Array Technology, ed. by J. Lau (McGraw-Hill, New York, 1995)

    Google Scholar 

  12. W. Engelmaier, Fatigue life of leadless chip carriers solder joints during power cycling. IEEE Trans. Compon. Hybrids Manuf. Technol. 6, 232–237 (1983)

    Article  Google Scholar 

  13. O.H. Basquin, The exponential law of endurance tests. ASTM Proc. 10, 625–630 (1910)

    Google Scholar 

  14. L.F. Coffin Jr., A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME 76, 931–950 (1954)

    Google Scholar 

  15. S.S. Manson, Fatigue: A complex subject-some simple approximations. Exp. Mech. 5, 193–226 (1965)

    Article  Google Scholar 

  16. J. Morrow, Cyclic plastic strain energy and fatigue of metals, in B. Lazan (ed.) STP43764S Internal Friction, Damping, and Cyclic Plasticity, STP43764S. ASTM International, West Conshohocken, PA, 1965, pp. 45–87. https://doi.org/10.1520/STP43764S

  17. IPC-9701, Performance test methods and qualification requirements for surface mount solder attachments, Northbrook, IL, Jan. 2002

    Google Scholar 

  18. M. Osterman, M. Pecht, Strain range fatigue life assessment of lead-free solder interconnects subject to temperature cycle loading. Solder. Surf. Mt. Technol. 19(2), 12–17 (2007)

    Article  Google Scholar 

  19. C. Cohn, C. Harper (eds.), Failure-Free Integrated Circuit Packages (McGraw-Hill, New York, 2005)

    Google Scholar 

  20. M. Pecht (ed.), Handbook of Electronic Package Design (CRC Press, New York, 1991)

    Google Scholar 

  21. CALCE SARA, CALCE, www.calce.umd.edu/software. Accessed Nov 2017

  22. C. Norris, A.H. Landzberg, Reliability of controlled collapse interconnections. IBM J. Res. Dev. 266–271 (1969)

    Article  Google Scholar 

  23. N. Pan, et al., An acceleration model for Sn-Ag-Cu solder joint reliability under various thermal cycle conditions, in Proc. SMTA, pp. 876–883 (2005)

    Google Scholar 

  24. Q. Haiyu, S. Ganesan, M. Pecht, No-fault-found and intermittent failures in electronic products. Microelectron. Reliab. 48(5), 663–674 (2008)

    Article  Google Scholar 

  25. M. Čepin, Reliability block diagram, in Assessment of Power System Reliability (Springer, London, 2011), pp. 119–123

    Chapter  Google Scholar 

  26. C.A. Ericson, Fault tree analysis, in System Safety Conference, Orlando, Florida, pp. 1–9 (1999)

    Google Scholar 

  27. J. Gu, M. Pecht, Prognostics and health management using physics-of-failure, in IEEE Reliability and Maintainability Symposium, 2008, pp. 481–487

    Google Scholar 

  28. A. Ramakrishnan, M.G. Pecht, A life consumption monitoring methodology for electronic systems. IEEE Trans. Compon. Packag. Technol. 26(3), 625–634 (2003)

    Article  Google Scholar 

  29. P. Chauhan, S. Mathew, M. Osterman, M. Pecht, In situ interconnect failure prediction using canaries. IEEE Trans. Device Mater. Reliab. 14(3), 826–832 (2014)

    Article  Google Scholar 

  30. S. Mathew, M. Osterman, M. Pecht, A canary device based approach for prognosis of ball grid array packages, in IEEE Conference on Prognostics and Health Management (PHM), Denver, CO, 18–22 June 2012

    Google Scholar 

  31. A. Palmgren, Die lebensdauer von kugellagern. Veifahrenstechinik 68, 339–341 (1924). (Berlin)

    Google Scholar 

  32. M. Miner, Cumulative damage in fatigue. J. Appl. Mech. 67, AI59–AI64 (1945)

    Google Scholar 

  33. S.D. Downing, D.F. Socie, Simple rain flow counting algorithms. Int. J. Fatigue 4(1), 31–40 (1982)

    Article  Google Scholar 

  34. Standard Practice for Cycle Counting in Fatigue Practices, ASTM Standard E1049-85 (2011)

    Google Scholar 

  35. K.D. Cluff, D. Robbins, T. Edwards, B. Barker, Characterizing the commercial avionics thermal environment for field reliability assessment. J. Inst. Environ. Sci. 40(4), 22–28 (1997)

    Google Scholar 

  36. N. Vichare, P. Rodgers, M. Pecht, Methods for binning and density estimation of load parameters for prognostics and health management. Int. J. Perform. Eng. 2(2), 149–161 (2006)

    Google Scholar 

  37. A. Dasgupta, R. Doraiswami, M. Azarian, M. Osterman, S. Mathew, M. Pecht, The use of canaries for adaptive health management of electronic systems, in ADAPTIVE 2010, IARIA Conference, Lisbon Portugal, 21–26 Nov. 2010

    Google Scholar 

  38. Y.Z. Rosunally, S. Stoyanov, C. Bailey, P. Mason, S. Campbell, G. Monger, I. Bell, Fusion Approach for Prognostics Framework of Heritage Structure. IEEE Trans. Reliab. 60(1), 3–13 (2011)

    Article  Google Scholar 

  39. D.K. Han, M.G. Pecht, D.K. Anand, R. Kavetsky, Energetic material/systems prognostics, in 53rd Annual Reliability & Maintainability Symposium (RAMS) (2007)

    Google Scholar 

  40. H.R. Shea, A. Gasparyan, H.B. Chan, S. Arney, R.E. Frahm, D. López, S. Jin, R.P. McConnell, Effects of electrical leakage currents on MEMS reliability and performance. IEEE Trans. Device Mater. Reliab. 4(2), 198–207 (2004)

    Article  Google Scholar 

  41. Y. Otsuka, T. Sato, T. Yoshiki, T. Hayashida, Multicore energy reduction utilizing canary FF, in IEEE 2010 International Symposium on Communications and Information Technologies (ISCIT), Tokyo, pp. 922–927, 26–29 Oct. 2010

    Google Scholar 

  42. B.H. Calhoun, A. Chandrakasan, Standby power reduction using dynamic voltage scaling and canary flip-flop structures. IEEE J. Solid State Circuits 39(9) (2004)

    Article  Google Scholar 

  43. J. Wang, A. Hoefler, B.H. Calhoun, An enhanced canary-based system with BIST for standby power reduction. IEEE Trans. Very Large Scale Integr. VLSI Syst. 19(5), 909–914 (2011)

    Article  Google Scholar 

  44. Ridgetop Group Inc., Ridge top Products, www.ridgetopgroup.com/products

  45. D. Goodman, B. Vermeire, J. Ralston-Good, R. Graves, A board-level prognostic monitor for MOSFET TDDB, in IEEE Aerospace Conference, Mar. 2006

    Google Scholar 

  46. C.R. Keese, I. Giaever, A biosensor that monitors cell morphology with electrical field. IEEE Eng. Med. Biol. 13, 402–408 (1994)

    Article  Google Scholar 

  47. M.S. Petrovick, J.D. Harper, F.E. Nargi, E.D. Schwoebel, M.C. Hennessy, T.H. Rider, M.A. Hollis, Rapid sensors for biological-agent identification. Linc. Lab. J. 17(1), 63–84 (2007). (Special Issue: Chemical and Biological Defense)

    Google Scholar 

  48. P. Chauhan, M. Osterman, M. Pecht, Canary approach for monitoring BGA interconnect reliability under temperature cycling, in The MFPT 2012 Proceedings (2012)

    Google Scholar 

  49. P. Lall, N. Islam, K. Rahim, J. Suhling, S. Gale, Leading indicators-of-failure for prognosis of electronic and MEMS packaging, in Proceedings of 54th Electronic Components & Technology Conference, 2004, pp. 1570–1578, Las Vegas, NV, 1–4 June 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhakar V. Varde .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varde, P.V., Pecht, M.G. (2018). Physics-of-Failure Approach for Electronics. In: Risk-Based Engineering. Springer Series in Reliability Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-0090-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0090-5_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0088-2

  • Online ISBN: 978-981-13-0090-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics