Skip to main content

Major Phytoplasma Diseases of Forest and Urban Trees

  • Chapter
  • First Online:
Phytoplasmas: Plant Pathogenic Bacteria - I

Abstract

In the northern hemisphere, yellows, witches’ broom, and decline diseases of several forest and urban tree species are widespread and of considerable economic and ecological significance. Elm (Ulmus spp.) and alder (Alnus spp.) are affected by elm yellows (EY) and alder yellows (ALY), respectively. These diseases are mainly associated with the presence of closely related phytoplasmas, the EY agent ‘Candidatus Phytoplasma ulmi’ and the ALY agent, which are members of the EY or 16SrV group, subgroups 16SrV-A and 16SrV-C, respectively. Ash (Fraxinus spp.) is affected by ash yellows, a disease which occurs mainly in North America and is associated with the presence of ‘Candidatus Phytoplasma fraxini’, a member of subgroup 16SrVII-A. Poplar (Populus spp.), sandal (Santalum album), paulownia (Paulownia spp.), and mulberry (Morus spp.) are affected by yellows diseases associated with phytoplasmas of different 16SrI subgroups. Several species of conifers are affected by yellows and witches’ broom diseases associated with phytoplasmas belonging to at least five taxonomic groups (16SrI, 16SrIII, 16SrVI, 16SrIX, and 16SrXXI) and several different subgroups. A number of urban tree species grown in the Sabana de Bogotà (Colombia) are affected by decline diseases which are primarily associated with 16SrI and 16SrVII phytoplasmas. This chapter summarizes the current knowledge of major phytoplasma diseases of forest and urban trees grown in the northern hemisphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelini E, Squizzato F, Lucchetta G, Borgo M (2004) Detection of a phytoplasma associated with grapevine “flavescence dorée” in Clematis vitalba. European Journal of Plant Pathology 110, 193–201.

    Article  CAS  Google Scholar 

  • Arnaud G, Malembic-Maher S, Salar P, Bonnet P, Maixner M, Marcone C, Boudon-Padieu E, Foissac X (2007) Multilocus sequence typing confirms the close genetic interrelatedness of three distinct “flavescence dorée” phytoplasma strain clusters and group 16SrV phytoplasmas infecting grapevine and alder in Europe. Applied and Environmental Microbiology 73, 4001–4010.

    Google Scholar 

  • Atanasoff D (1973) Witches’ brooms on stems of elms and other trees. Archiv für Phytopathologie und Pflanzenschutz 9, 241–243.

    Article  Google Scholar 

  • Baker WL (1949) Studies on the transmission of the virus causing phloem necrosis of American elm, with notes on the biology of its insect vector. Journal of Economic Entomology 42, 729–732.

    Article  Google Scholar 

  • Berges R, Cousin MT, Roux J, Seemüller E (1997) Detection of phytoplasma infections in declining Populus nigra Italica trees and molecular differentiation of the aster yellows phytoplasmas identified in various Populus species. European Journal of Forest Pathology 27, 33–43.

    Article  Google Scholar 

  • Bertaccini M, Mittempergher L, Vibio M (1996) Identification of phytoplasmas associated with a decline of European hackberry (Celtis australis). Annals of Applied Biology 128, 245–253.

    Article  Google Scholar 

  • Bertaccini A, Duduk B, Paltrinieri S, Contaldo N (2014) Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. American Journal of Plant Sciences 5, 1763–1788.

    Article  Google Scholar 

  • Bila J, Mondjana A, Samils B, Högberg N (2015) Potential novel ‘Candidatus Phytoplasma pini’-related strain associated with coconut lethal yellowing in Mozambique. Phytopathogenic Mollicutes 5(1-Supplement), S59–S60.

    Article  Google Scholar 

  • Botti S, Bertaccini A (2007) Grapevine yellows in Northern Italy: molecular identification of “flavescence dorée” phytoplasma strains and of “bois noir” phytoplasmas. Journal of Applied Microbiology 103, 2325–2330.

    Article  PubMed  CAS  Google Scholar 

  • Braun EJ, Sinclair WA (1979) Phloem necrosis of elms: symptoms and histopathological observations in tolerant hosts. Phytopathology 69, 354–358.

    Article  Google Scholar 

  • Carraro L, Ferrini F, Ermacora P, Loi N, Martini M, Osler R (2004) Macropsis mendax as a vector of elm yellows phytoplasma of Ulmus species. Plant Pathology 53, 90–95.

    Article  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657–1659.

    Article  PubMed  CAS  Google Scholar 

  • Conti M, D’Agostino G, Mittempergher L (1987) A recent epiphytotic of elm yellows in Italy. 7th Congress of the Mediterranean Phytopathological Union, Granada, Spain, 208–209.

    Google Scholar 

  • Cousin MT (1996) Witches’ broom, a phytoplasma disease of poplar. In: Forest Trees and Palm Diseases and Control. Eds Maramorosch K, Raychaudhuri SP. Oxford and IBH Publishing Company, New Delhi, India, 267-283 pp.

    Google Scholar 

  • Cousin M-T, Roux J, Boudon-Padieu E, Berges R, Seemüller E, Hiruki C (1998) Use of heteroduplex mobility analysis (HMA) for differentiating phytoplasma isolates causing witches’ broom disease on Populus nigra cv Italica and “stolbur” or big bud symptoms on tomato. Journal of Phytopathology 146, 97–102.

    Article  Google Scholar 

  • Cousin M-T, Berges R, Roux J, Moreau J-P, Hiruki C, Seemüller E (1999) Populus nigra L. Italica decline in France. Variability of the phytoplasma responsible for the disease in Europe. Results and perspectives. Acta Horticulturae 496, 77–86.

    Google Scholar 

  • Cvrković T, Jović J, Mitrović M, Petrović A, Krnjajić S, Malembic-Maher S, Toševski I (2008) First report of alder yellows phytoplasma on common alder (Alnus glutinosa) in Serbia. Plant Pathology 57, 773.

    Article  Google Scholar 

  • Davis RI, Arocha Y, Jones P, Malau A (2005) First report of the association of phytoplasmas with plant diseases in the territory of Wallis and Futuna. Australasian Plant Pathology 34, 417–418.

    Article  Google Scholar 

  • Davis RE, Dally EL, Zhao Y, Lee I-M, Jomantiene R, Detweiler AJ, Putnam ML (2010) First report of a new subgroup 16SrIX-E (‘Candidatus Phytoplasma phoenicium’-related) phytoplasma associated with juniper witches’ broom disease in Oregon, USA. Plant Pathology 59, 1161.

    Article  Google Scholar 

  • Davis RE, Zhao Y, Dally EL, Lee I-M, Jomantiene R, Douglas SM (2013) ‘Candidatus Phytoplasma pruni’, a novel taxon associated with X-disease of stone fruits, Prunus spp.: multilocus characterization based on 16S rRNA, secY, and ribosomal protein genes. International Journal of Systematic and Evolutionary Microbiology 63, 766–776.

    Article  PubMed  CAS  Google Scholar 

  • Dickinson M, Tuffen M, Hodgetts J (2013) The phytoplasmas: an introduction. Methods in Molecular Biology 938, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Dijkstra J, Ie TS (1969) Presence of mycoplasma-like bodies in the phloem of sandal affected with spike disease. Netherlands Journal of Plant Pathology 75, 374–378.

    Article  Google Scholar 

  • Dijkstra J, Lee PE (1972) Transmission by dodder of sandal spike disease and the accompanying mycoplasma-like organisms via Vinca rosea. Netherlands Journal of Plant Pathology 78, 218–228.

    Article  Google Scholar 

  • Doi Y, Asuyama H (1981) Paulownia witches’ broom disease. In: Mycoplasma Diseases of Trees and Shrubs. Eds Maramorosch K, Raychaudhuri SP. Academic Press, New York, New York, USA, 135-146 pp.

    Google Scholar 

  • Doi Y, Teranaka M, Yora K, Asuyama H (1967) Mycoplasma- or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows, or paulownia witches’ broom. Annals of the Phytopathological Society of Japan 33, 259–266.

    Article  Google Scholar 

  • Du T, Wang Y, Hu Q-X, Chen J, Liu S, Huang W-J, Lin M-L (2005) Transgenic Paulownia expressing shiva-1 gene has increased resistance to paulownia witches’ broom disease. Journal of Integrative Plant Biology 47, 1500–1506.

    Article  CAS  Google Scholar 

  • Duduk B, Tian JB, Contaldo N, Fan XP, Paltrinieri S, Chen QF, Zhao QF, Bertaccini A (2010) Occurrence of phytoplasmas related to “stolbur” and to ‘Candidatus Phytoplasma japonicum’ in woody host plants in China. Journal of Phytopathology 158, 100–104.

    Article  CAS  Google Scholar 

  • Ember I, Acs Z, Salar P, Danet J-L, Foissac X, Kölber M, Malembic-Maher S (2011) Survey and genetic diversity of phytoplasmas from the 16SrVC and -D subgroups in Hungary. Bulletin of Insectology 64(Supplement), S33–S34.

    Google Scholar 

  • Eastburn DM, McElrone AJ, Bilgin DD (2011) Influence of atmospheric and climatic change on plant-pathogen interactions. Plant Pathology 60, 54–69.

    Article  Google Scholar 

  • Fernández EGB, Calari A, Hanzer V, Katinger H, Bertaccini A, Laimer M (2007) Phytoplasma infected plants in Austrian forests: role as a reservoir? Bulletin of Insectology 60, 391–392.

    Google Scholar 

  • Fernández FD, Galdeano E, Kornowski MV, Arneodo JD, Conci LR (2016) Description of ‘Candidatus Phytoplasma meliae’, a phytoplasma associated with Chinaberry (Melia azedarach L.) yellowing in South America. International Journal of Systematic and Evolutionary Microbiology 66, 5244–5251.

    Article  PubMed  Google Scholar 

  • Filgueira JJ, Franco-Lara L, Salcedo JE, Gaitan SL, Boa ER (2004) Urapan (Fraxinus udhei) dieback, a new disease associated with a phytoplasma in Colombia. Plant Pathology 53, 520.

    Article  Google Scholar 

  • Filippin L, Jović J, Cvrković T, Forte V, Clair D, Toševski I, Boudon-Padieu E, Borgo M, Angelini E (2009) Molecular characteristics of phytoplasmas associated with “flavescence dorée” in clematis and grapevine and preliminary results on the role of Dictyophara europaea as a vector. Plant Pathology 58, 826–837.

    Article  CAS  Google Scholar 

  • Filippin L, De Pra V, Zottini M, Borgo M, Angelini E (2011) Nucleotide sequencing of imp gene in phytoplasmas associated to “flavescence dorée” from Ailanthus altissima. Bulletin of Insectology 64, 49–50.

    Google Scholar 

  • Franco-Lara L, Perilla Henao LM (2014) Phytoplasma diseases in trees of Bogotà, Colombia: a serious risk for urban trees and crops. In: Phytoplasmas and phytoplasma disease management: how to reduce their economic impact. Ed Bertaccini A. COST FA0807, Bologna, Italy, 90–100 pp.

    Google Scholar 

  • Franco-Lara L, Contaldo N, Mejia JF, Paltrinieri S, Duduk B, Bertaccini A (2017) Detection and identification of phytoplasmas associated with declining Liquidambar styraciflua trees in Colombia. Tropical Plant Pathology 42, 352–361.

    Article  Google Scholar 

  • Gao R, Wang J, Shao Y-H, Li X-D, Yang B-H, Chang WC, Zhao W-J, Zhu S-F (2011) Molecular identification of a phytoplasma associated with elm witches’ broom in China. Forest Pathology 41, 355–360.

    Article  Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology 281, 180–195.

    Article  Google Scholar 

  • Griffiths HM, Sinclair WA, Smart CD, Davis RE (1999a) The phytoplasma associated with ash yellows and lilac witches’ broom: ‘Candidatus Phytoplasma fraxini’. International Journal of Systematic and Evolutionary Microbiology 49, 1605–1614.

    CAS  Google Scholar 

  • Griffiths HM, Sinclair WA, Boudon-Padieu E, Daire X, Lee I-M, Sfalanga A, Bertaccini A (1999b) Phytoplasmas associated with elm yellows: molecular variability and differentiation from related organisms. Plant Disease 83, 1101–1104.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths HM, Boa ER, Filgueira JJ (2001) Ash yellows: a new disease of Fraxinus chinensis in Colombia. Phytopathology 91, S33–S34.

    Google Scholar 

  • Gupta MK, Samad A, Shasany AK, Ajayakumar PV, Alam M (2010) First report of a 16SrVI ‘Candidatus Phytoplasma trifolii’ isolate infecting Norfolk Island pine (Auraucaria heterophylla) in India. Plant Pathology 59, 399.

    Article  Google Scholar 

  • Huang S, Tiwari AK, Rao GP (2011) ‘Candidatus Phytoplasma pini’ affecting Taxodium distichum var. imbricarium in China. Phytopathogenic Mollicutes 1, 91–94.

    Article  Google Scholar 

  • Herath P, Hoover GA, Angelini E, Moorman GW (2010) Detection of elm yellows phytoplasma in elms and insects using real-time PCR. Plant Disease 94, 1355–1360.

    Article  CAS  PubMed  Google Scholar 

  • Hill GT, Sinclair WA (2000) Taxa of leafhoppers carrying phytoplasmas at sites of ash yellows occurrence in New York State. Plant Disease 84, 134–138.

    Article  PubMed  Google Scholar 

  • Hiruki C (1999) Paulownia witches’ broom disease important in East Asia. Acta Horticulturae 496, 63–68.

    Google Scholar 

  • Hiruki C, Dijkstra J (1973) Light and electron microscopy of vinca plants infected with mycoplasma-like bodies of the sandal spike disease. Netherlands Journal of Plant Pathology 79, 207–217.

    Article  Google Scholar 

  • Holz S, Duduk B, Büttner C, Kube M (2016) Genetic variability of alder yellows phytoplasma in Alnus glutinosa in its natural Spreewald habitat. Forest Pathology 46, 11–21.

    Article  Google Scholar 

  • Hull R, Horne RW, Nayar RM (1969) Mycoplasma-like bodies associated with sandal spike disease. Nature 224, 1121–1122.

    Article  Google Scholar 

  • IRPCM (2004) ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology 54, 1243–1255.

    Article  CAS  Google Scholar 

  • Ishiie T, Doi Y, Yora K, Asuyama H (1967) Suppressive effects of antibiotics of tetracycline group on symptoms development of mulberry dwarf disease. Annals of the Phytopathological Society of Japan 33, 267–275.

    Article  CAS  Google Scholar 

  • Jacobs KA, Lee I-M, Griffiths HM, Miller FD Jr, Bottner KD (2003) A new member of the clover proliferation phytoplasma group (16SrVI) associated with elm yellows in Illinois. Plant Disease 87, 241–246.

    Google Scholar 

  • Ježić M, Poljak I, Idžojtić M, Ćurković-Perica M (2012) First report of ‘Candidatus Phytoplasma pini’ in Croatia. 19th Congress of the International Organisation for Mycoplasmology, Toulouse, France, 158–159.

    Google Scholar 

  • Ji X, Gai Y, Zheng C, Mu Z (2009) Comparative proteomic analysis provides new insights into mulberry dwarf responses in mulberry (Morus alba L.). Proteomics 9, 5328–5339.

    Article  PubMed  CAS  Google Scholar 

  • Jomantiene R, Valiunas D, Ivanauskas A, Urbanaviciene L, Staniulis J, Davis RE (2011) Larch is a new host for a group 16SrI, subgroup B, phytoplasma in Ukraine. Bulletin of Insectology 64(Supplement), S101–S102.

    Google Scholar 

  • Jović J, Cvrković T, Mitrović M, Petrović A, Krstić O, Krnjajić S and Toševski I (2010) Genetic variability among ‘Candidatus Phytoplasma ulmi’ strains infecting elms in Serbia and survey of potential vectors. In: Current Status and Perspectives of Phytoplasma Disease Research and Management. Eds Bertaccini A, Laviña A, Torres E. COST Action FA0807, Sitges, Spain, 18.

    Google Scholar 

  • Jović J, Cvrković T, Mitrović M, Petrović A, Krstić O, Krnjajić S, Toševski I (2011) Multigene sequence data and genetic diversity among ‘Candidatus Phytoplasma ulmi’strains infecting Ulmus spp. in Serbia. Plant Pathology 60, 356–368.

    Article  CAS  Google Scholar 

  • Jung HY, Sawayanagi T, Kakizawa S, Nishigawa H, Wei W, Oshima K, Miyata S, Ugaki M, Hibi T, Namba S (2003) ‘Candidatus Phytoplasma ziziphi’, a novel phytoplasma taxon associated with jujube witches’ broom disease. International Journal of Systematic and Evolutionary Microbiology 53, 1037–1041.

    Article  PubMed  CAS  Google Scholar 

  • Kamińska M, Berniak H (2009) ‘Candidatus Phytoplasma asteris’ in Fraxinus excelsior and its association with ash yellows newly reported in Poland. Plant Pathology 58, 788.

    Article  Google Scholar 

  • Kamińska M, Berniak H (2011) Detection and identification of three ‘Candidatus Phytoplasma’ species in Picea spp. trees in Poland. Journal of Phytopathology 159, 796–798.

    Article  Google Scholar 

  • Kamińska M, Berniak H, Obdrzalek J (2011) New natural host plants of ‘Candidatus Phytoplasma pini’ in Poland and the Czech Republic. Plant Pathology 60, 1023–1029.

    Article  CAS  Google Scholar 

  • Katanić Z, Krstin L, Ježić M, Zebec M, Ćurković-Perica M (2016) Molecular characterization of elm yellows phytoplasmas in Croatia and their impact on Ulmus spp. Plant Pathology 65, 1430–1440.

    Article  CAS  Google Scholar 

  • Kawakita H, Saiki T, Wei W, Mitsuhashi W, Watanabe K, Sato M (2000) Identification of mulberry dwarf phytoplasmas in the genital organs and eggs of leafhopper Hishimonoides sellatiformis. Phytopathology 90, 909–914.

    Article  PubMed  CAS  Google Scholar 

  • Khan JA, Srivastava P, Sing SK (2006) Identification of a ‘Candidatus Phytoplasma asteris’-related strain associated with spike disease of sandal (Santalum album) in India. Plant Pathology 55, 572.

    Article  Google Scholar 

  • Khan JA, Sing SK, Ahmad J (2008) Characterisation and phylogeny of a phytoplasma inducing sandal spike disease in sandal (Santalum album). Annals of Applied Biology 153, 365–372.

    Article  CAS  Google Scholar 

  • Kim YH, La YJ, Kim YT (1985) Transmission and histochemical detection of mulberry dwarf mycoplasma in several herbaceous plants. Korean Journal of Plant Pathology 1, 184–189.

    Google Scholar 

  • Kuai YZ, Zhu FP, Xia ZS, Chen PG (1999) Studies on the mechanism of mulberry varietal resistance to mulberry yellow dwarf disease. International Journal of Tropical Plant Disease 17, 103–114.

    Google Scholar 

  • Lederer W, Seemüller E (1991) Occurrence of mycoplasma-like organisms in diseased and non-symptomatic alder trees (Alnus spp.). European Journal of Forest Pathology 21, 90–96.

    Article  Google Scholar 

  • Lee I-M, Davis RE, Sinclair WA, De Witt ND, Conti M (1993) Genetic relatedness of mycoplasmalike organisms detected in Ulmus spp. in the United States and Italy by means of DNA probes and polymerase chain reactions. Phytopathology 83, 829–833.

    Article  CAS  Google Scholar 

  • Lee I-M, Bertaccini A, Vibio M, Gundersen DE, Davis RE, Mittempergher L, Conti M, Gennari F, (1995) Detection and characterization of phytoplasmas associated with disease in Ulmus and Rubus in northern and central Italy. Phytopathologia Mediterranea 34, 174–183.

    CAS  Google Scholar 

  • Lee I-M, Davis RE, Gundersen-Rindal DE (2000) Phytoplasma: phytopathogenic mollicutes. Annual Review of Microbiology 54, 221–255.

    Article  PubMed  CAS  Google Scholar 

  • Lee I-M, Martini M, Marcone C, Zhu SF (2004a) Classification of phytoplasma strains in the elm yellows group (16SrV) and proposal of ‘Candidatus Phytoplasma ulmi’ for the phytoplasma associated with elm yellows. International Journal of Systematic and Evolutionary Microbiology 54, 337–347.

    Article  PubMed  CAS  Google Scholar 

  • Lee I-M, Gundersen-Rindal DE, Davis RE, Bottner KD, Marcone C, Seemüller E (2004b) ‘Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. International Journal of Systematic and Evolutionary Microbiology 54, 1037–1048.

    Article  PubMed  CAS  Google Scholar 

  • Lee I-M, Zhao Y, Bottner KD (2006) SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma group. Molecular and Cellular Probes 20, 87–91.

    Article  PubMed  CAS  Google Scholar 

  • Lee I-M, Zhao Y, Davis RE (2010) Prospects of multiple gene-based systems for differentiation and classification of phytoplasmas. In: Phytoplasmas: Genomes, Plant Hosts and Vectors. Eds Weintraub PG, Jones P. CAB International, Wallingford, Oxfordshire, United Kingdom, 51–63 pp.

    Google Scholar 

  • Maixner M, Reinert W (1999) Oncopsis alni (Schrank) (Auchenorrhyncha: Cicadellidae) as a vector of the alder yellows phytoplasma of Alnus glutinosa (L.) Gaertn. European Journal of Plant Pathology 105, 87–94.

    Article  Google Scholar 

  • Maixner M, Rüdel M, Daire X, Boudon-Padieu E (1995) Diversity of grapevine yellows in Germany. Vitis 34, 235–236.

    Google Scholar 

  • Maixner M, Reinert W, Darimont H (2000). Transmission of grapevine yellows by Oncopsis alni (Schrank) (Auchenorrhynca: Macropsinae). Vitis 39, 83–84.

    Google Scholar 

  • Malembic-Maher S, Salar P, Vergnes D, Foissac X (2007) Detection and diversity of “flavescence dorée”-related phytoplasmas in alders surrounding infected vineyards in Aquitaine (France). Bulletin of Insectology 60, 329–330.

    Google Scholar 

  • Malembic-Maher S, Salar P, Carle P, Foissac X (2009) Ecology and taxonomy of “flavescence dorée” phytoplasmas: the contribution of genetic diversity studies. Le Progrés Agricole et Viticole HS, 132–134.

    Google Scholar 

  • Malembic-Maher S, Salar P, Filippin L, Carle P, Angelini E, Foissac X (2011) Genetic diversity of European phytoplasmas of the 16SrV taxonomic group and proposal of ‘Candidatus Phytoplasma rubi’. International Journal of Systematic and Evolutionary Microbiology 61, 2129–2134.

    Article  PubMed  Google Scholar 

  • Marcone C (2015) Current status of phytoplasma diseases of forest and landscape trees and shrubs. Journal of Plant Pathology 97, 9–36.

    Google Scholar 

  • Marcone C (2017) Elm yellows: a phytoplasma disease of concern in forest and landscape ecosystems. Forest Pathology 47, e12324.

    Article  Google Scholar 

  • Marcone C, Rao GP (2016) Elm and alder yellows: etiology, symptomatology and epidemiology. Phytopathogenic Mollicutes 6, 63–70.

    Article  Google Scholar 

  • Marcone C, Lee I-M, Davis RE, Ragozzino A, Seemüller E (2000) Classification of aster yellows-group phytoplasmas based on combined analyses of ribosomal RNA and tuf gene sequences. International Journal of Systematic and Evolutionary Microbiology 50, 1703–1713.

    Article  PubMed  CAS  Google Scholar 

  • Martini M, Marcone C, Lee I-M, Firrao G (2014). The family Acholeplasmataceae (including phytoplasmas). In: The Prokaryotes – Firmicutes and Tenericutes, 4th edition, XXII. Eds Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. Springer-Verlag, Berlin, Germany, 469–504 pp.

    Google Scholar 

  • Matteoni JA, Sinclair WA (1985) Role of the mycoplasmal disease, ash yellows, in decline of white ash in New York State. Phytopathology 75, 355–360.

    Article  Google Scholar 

  • Matteoni JA, Sinclair WA (1988) Elm yellows and ash yellows. In: Tree Mycoplasmas and Mycoplasma Diseases. Ed Hiruki C. University of Alberta Press, Edmonton, Alberta, Canada, 19-31 pp.

    Google Scholar 

  • Mäurer R, Seemüller E, Sinclair WA (1993) Genetic relatedness of mycoplasmalike organisms affecting elm, alder, and ash in Europe and North America. Phytopathology 83, 971–976.

    Article  Google Scholar 

  • Mehle N, Rupar M, Seljak G, Ravnikar M, Dermastia M (2011) Molecular diversity of “flavescence dorée” phytoplasma strains in Slovenia. Bulletin of Insectology 64(Supplement), S29–S30.

    Google Scholar 

  • Mitrović J, Paltrinieri S, Contaldo N, Bertaccini A, Duduk B (2011) Occurrence of two ‘Candidatus Phytoplasma asteris’-related phytoplasmas in poplar trees in Serbia. Bulletin of Insectology 64(Supplement), S57–S58.

    Google Scholar 

  • Mittempergher L (2000) Elm yellows in Europe. In: The elms: breeding, conservation, and disease management. Ed Dunn CP. Kluwer Academic Publisher, Boston, Massachusetts, USA, 103-119 pp.

    Chapter  Google Scholar 

  • Namba S, Oyaizu S, Kato S, Iwanami S, Tsuchizaki T (1993) Phylogenetic diversity of phytopathogenic mycoplasmalike organisms. International Journal of Systematic Bacteriology 43, 461–467.

    Article  PubMed  CAS  Google Scholar 

  • Navrátil M, Šafářová D, Válová P, Fránová J, Šimková M (2009) Phytoplasma associated with witches’ broom disease of Ulmus minor Mill. in the Czech Republic: electron microscopy and molecular characterization. Folia Microbiologica 54, 37–42.

    Article  PubMed  CAS  Google Scholar 

  • Paltrinieri S, Martini M, Pondrelli M, Bertaccini A (1998) X-disease-related phytoplasmas in ornamental trees and shrubs with witches’ broom and malformation symptoms. Journal of Plant Pathology 80, 261.

    Google Scholar 

  • Perilla-Henao LM, Franco-Lara L (2013) Especies arbóreas de las familias Euphorbiaceae, Pittosporaceae y Salicaceae son infectadas por ‘Ca. Phytoplasma fraxini’ y ‘Ca. Phytoplasma asteris’ en infecciones mixtas en Bogotá, Colombia. Revista Facultad de Ciencias Básicas 9, 248–65.

    Article  Google Scholar 

  • Perilla-Henao LM, Dickinson M, Franco-Lara L (2012) First report of ‘Candidatus Phytoplasma asteris’ affecting woody hosts (Fraxinus udhei, Populus nigra, Pittosporum undulatum, and Croton spp.) in Colombia. Plant Disease 96, 1372.

    Article  PubMed  Google Scholar 

  • Perilla-Henao L, Wilson MR, Franco-Lara L (2016) Leafhoppers Exitianus atratus and Amplicephalus funzaensis transmit phytoplasmas of groups 16SrI and 16SrVII in Colombia. Plant Pathology 65, 1200–1209.

    Article  CAS  Google Scholar 

  • Pisi A, Marani F, Bertaccini A (1981) Mycoplasma-like organisms associated with elm witches’ broom symptoms. Phytopathologia Mediterranea 20, 189–191.

    Google Scholar 

  • Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends in Ecology and Evolution 16, 37–45.

    Article  PubMed  CAS  Google Scholar 

  • Rangaswami S, Griffith AL (1941) Demonstration of Jassus indicus (Walk.) as a vector of the spike disease of sandal (Santalum album Linn.) The Indian Forester 67, 387–394.

    Google Scholar 

  • Rao MS, Muniyappa V (1988) Epidemiology of sandal spike-disease. In: Tree Mycoplasmas and Mycoplasma Diseases. Ed Hiruki C. University of Alberta Press, Edmonton, Alberta, Canada, 57–58 pp.

    Google Scholar 

  • Raychaudhuri SP, Chenulu VV, Ghosh SK, Varma A, Rap PS, Srimathi RA, Nag KC (1972) Chemical control of spike disease of sandal. Current Science 41, 72–73.

    Google Scholar 

  • Reinert W, Maixner M (1997) Epidemiological studies on a new grapevine yellows in Germany. 12th ICVG Meeting, Lisbon, Portugal, 65–66.

    Google Scholar 

  • Rosa C, McCarthy E, Duong K, Hoover G, Moorman G (2014) First report of the spittlebug Lepyronia quadrangularis and the leafhopper Latalus sp. as vectors of the elm yellows associated phytoplasma, ‘Candidatus Phytoplasma’ ulmi in North America. Plant Disease 98, 154.

    Article  PubMed  Google Scholar 

  • Sato M, Mitsuhashi W, Watanabe K, Kawakita H (1996) PCR detection of mulberry dwarf disease-phytoplasmas in mulberry tissues, phloem sap collected by laser stylectomy and insect vector Hishimonus sellatus. Journal of Sericulture Science of Japan 65, 352–358.

    CAS  Google Scholar 

  • Schneider B, Torres E, Martín MP, Schröder M, Behnke H-D, Seemüller E (2005) ‘Candidatus Phytoplasma pini’, a novel taxon from Pinus silvestris and Pinus halepensis. International Journal of Systematic and Evolutionary Microbiology 55, 303–307.

    Article  PubMed  CAS  Google Scholar 

  • Seemüller E, Lederer W (1988) MLO-associated decline of Alnus glutinosa, Populus tremula and Crataegus monogyna. Journal of Phytopathology 121, 33–39.

    Article  Google Scholar 

  • Seemüller E, Marcone C, Lauer U, Ragozzino A, Göschl M (1998) Current status of molecular classification of the phytoplasmas. Journal of Plant Pathology 80, 3–26.

    Google Scholar 

  • Šeruga M, Škorić D, Botti S, Paltrinieri S, Juretić N, Bertaccini A (2003) Molecular characterization of a phytoplasma from the aster yellows (16SrI) group naturally infecting Populus nigra L. Italica trees in Croatia. Forest Pathology 33, 113–125.

    Article  Google Scholar 

  • Sfalanga A, Martini M, Surico G, Bertaccini A (2002) Involvement of phytoplasmas in a decline of Ulmus chenmoui in central Italy. Forest Pathology 32, 265–275.

    Article  Google Scholar 

  • Sharma CD, Cousin MT (1986) Mycoplasmalike organisms (MLOs) associated with the witches’ broom disease of poplar. Journal of Phytopathology 117, 349–356.

    Article  Google Scholar 

  • Sinclair WA (1981) Elm yellows. In: Compendium of Elm Diseases. Eds Stipes RJ, Campana RJ. The American Phytopathological Society, St. Paul, Minnesota, USA, 25–31 pp.

    Google Scholar 

  • Sinclair WA (2000) Elm yellows in North America. In: The Elms: Breeding, Conservation, and Disease Management. Ed Dunn CP. Kluwer Academic Publisher, Boston, Massachusetts, USA, 121–136.

    Chapter  Google Scholar 

  • Sinclair WA, Griffiths HM (1995) Epidemiology of a slow-decline phytoplasmal disease: ash yellows on old-fields sites in New York State. Phytopathology 85, 123–128.

    Article  Google Scholar 

  • Sinclair WA, Griffiths HM, Davis RE (1996) Ash yellows and lilac witches’ broom: phytoplasmal diseases of concern in forestry and horticulture. Plant Disease 80, 468–475.

    Article  Google Scholar 

  • Sinclair WA, Townsend AM, Griffiths HM, Whitlow TH (2000a). Responses of six Eurasian Ulmus cultivars to a North American elm yellows phytoplasma. Plant Disease 84, 1266–1270.

    Article  PubMed  Google Scholar 

  • Sinclair WA, Gleason ML, Griffiths HM, Iles JK, Zriba N, Charlson DV, Batzer JC, Whitlow TH (2000b) Responses of 11 Fraxinus cultivars to ash yellows phytoplasma strains of differing aggressiveness. Plant Disease 84, 725–730.

    Article  PubMed  Google Scholar 

  • Śliwa H, Kaminska M, Korszun S, Adler P (2008) Detection of ‘Candidatus Phytoplasma pini’ in Pinus sylvestris trees in Poland. Journal of Phytopathology 156, 88–92.

    Article  CAS  Google Scholar 

  • Thomas S, Balasundaran M (1999) Detection of sandal spike phytoplasma by polymerase chain reaction. Current Science 76, 1574–1575.

    CAS  Google Scholar 

  • Valiunas D, Jomantiene R, Ivanauskas A, Sneideris D, Staniulis J, Davis RE (2010) A possible threat to the timber industry: ‘Candidatus Phytoplasma pini’ in Scots pine (Pinus sylvestris L.) in Lithuania. In: Current Status and Perspectives of Phytoplasma Disease Research and Management. Eds Bertaccini A, Laviña A, Torres E. COST Action FA0807. Sitges, Spain, 38.

    Google Scholar 

  • Valiunas D, Jomantiene R, Ivanauskas A, Urbonaite I, Sneideris D, Davis RE (2015) Molecular identification of phytoplasmas infecting diseased pine trees in the UNESCO-protected Curonian Spit of Lithuania. Forests 6, 2469–2483.

    Article  Google Scholar 

  • van der Meer FA (1980) Witches’ broom in poplars. Populier 17, 42–43.

    Google Scholar 

  • Weintraub PG, Beanland L (2006) Insect vectors of phytoplasmas. Annual Review of Entomology 51, 91–111.

    Article  PubMed  CAS  Google Scholar 

  • Win NKK, Lee SY, Bertaccini A, Namba S, Jung HY (2013) ‘Candidatus Phytoplasma balanitae’ associated with witches’ broom disease of Balanites triflora. International Journal of Systematic and Evolutionary Microbiology 63, 636–640.

    Article  PubMed  CAS  Google Scholar 

  • Yue HN, Wu YF, Shi YZ, Wu KK, Li YR (2008) First report of paulownia witches’ broom phytoplasma in China. Plant Disease 92, 1134.

    Article  PubMed  Google Scholar 

  • Zhao Y, Davis RE (2016) Criteria for phytoplasma 16Sr group/subgroup delineation and the need of a platform for proper registration of new groups and subgroups. International Journal of Systematic and Evolutionary Microbiology 66, 2121–2123

    Article  PubMed  CAS  Google Scholar 

  • Zhao YY, Contaldo N, Paltrinieri S, Satta E, Bertaccini A (2016) Multigene characterization of phytoplasmas infecting jujube and paulownia in China. Phytopathogenic Mollicutes 6, 63–68.

    Article  Google Scholar 

  • Zhu TS, Pan YZ, Cui TT, Gao R, Li X-D, Zhu SF (2008) Molecular detection and identification of the phytoplasma associated with elm yellows in China. Acta Phytopathologica Sinica 38, 401–406.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine Marcone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marcone, C., Franco-Lara, L., Toševski, I. (2018). Major Phytoplasma Diseases of Forest and Urban Trees. In: Rao, G., Bertaccini, A., Fiore, N., Liefting, L. (eds) Phytoplasmas: Plant Pathogenic Bacteria - I. Springer, Singapore. https://doi.org/10.1007/978-981-13-0119-3_10

Download citation

Publish with us

Policies and ethics