Skip to main content

Distortion in Metal Additive Manufactured Parts

  • Chapter
  • First Online:
3D Printing and Additive Manufacturing Technologies

Abstract

Metal based additive manufacturing (AM) techniques are continuously adopted by aerospace, automobile, defense, and healthcare industries. The primary concern for the components used in these applications is high precision. Despite being able to produce complex shapes, they lack in precision due to the distortions in shape and size of the part during and after fabrication. Distortion is the deviation of the part from its actual shape or dimension. Eventually, shape deviation has an unfavorable effect on the part functional performance which will hinder their use for critical technological applications. Even though, the temperature gradients during the process build affect these errors; they need to be studied in detail to fix the causation of these errors. In this paper, we review and classify the causation for shape and size distortion that occurs in metal additive processes. The approach to classification is multi-faceted and are based on the geometry of the fabricated part, the material used, process-related parameters, part orientation and physical phenomenon that occurs during the process. This work would help understand the root cause of distortion in major commercially successful metal AM processes and eliminate the need for costly trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ASTM-International, ASTM Standard F2792-12a: Standard Terminology for Additive Manufacturing Technologies (2012), p. 2792

    Google Scholar 

  2. I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, 1st edn. (Springer, New York, NY, USA, 2010)

    Book  Google Scholar 

  3. M. Piazza, S. Alexander, Additive Manufacturing : A Summary of the Literature (Urban Publications, 2015)

    Google Scholar 

  4. D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57(3), 133–164 (2012)

    Article  Google Scholar 

  5. W.E. Frazier, Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23(6), 1917–1928 (2014)

    Article  Google Scholar 

  6. H. Bikas, P. Stavropoulos, G. Chryssolouris, Additive manufacturing methods and modeling approaches: a critical review. Int. J. Adv. Manuf. Technol. 83(1–4), 389–405 (2016)

    Article  Google Scholar 

  7. E. Herderick, Additive manufacturing of metals: a review, in Material Science and Technology Conference and Exhibition 2011, MS T’11, vol. 2, no. 176252 (2011), pp. 1413–1425

    Google Scholar 

  8. C.Y. Yap et al., Review of selective laser melting: materials and applications. Appl. Phys. Rev. 2(4) (2015)

    Google Scholar 

  9. R. Vilar, Laser powder deposition. Compr. Mater. Process. 10, 163–216 (2014)

    Article  Google Scholar 

  10. G. Tapia, A. Elwany, A review on process monitoring and control in metal-based additive manufacturing. J. Manuf. Sci. Eng. 136(6), 60801 (2014)

    Article  Google Scholar 

  11. W. Gao et al., The status, challenges, and future of additive manufacturing in engineering. Comput. Des. 69, 65–89 (2015)

    Google Scholar 

  12. D. Gu et al., Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 60(9), 3849–3860 (2012)

    Article  Google Scholar 

  13. N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Reducing porosity in AlSi10Mg parts processed by selective laser melting. Add. Manuf. 1, 77–86 (2014)

    Google Scholar 

  14. S. Kleszczynski, J. zur Jocobsmuhlen, J.T. Sehrt, Error detection in laser beam melting systems by high resolution imaging, in Twenty Third Annual International Solid Freeform Fabrication Symposium, no. May 2016 (2012)

    Google Scholar 

  15. J. zur Jacobsmuhlen, S. Kleszczynski, D. Schneider, G. Witt, High resolution imaging for inspection of laser beam melting systems, in 2013 IEEE International Instrumentation and Measurement Technology Conference (2013), pp. 707–712

    Google Scholar 

  16. A.E. Patterson, S.L. Messimer, P.A. Farrington, Overhanging features and the SLM/DMLS residual stresses problem: review and future research need. Technologies 5(2), 15 (2017)

    Article  Google Scholar 

  17. A. Hussein, L. Hao, C. Yan, R. Everson, P. Young, Advanced lattice support structures for metal additive manufacturing. J. Mater. Process. Technol. 213(7), 1019–1026 (2013)

    Article  Google Scholar 

  18. J.-P. Kruth, J. Deckers, E. Yasa, R. Wauthle, Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 226(6), 980–991 (2012)

    Article  Google Scholar 

  19. P. Vora, K. Mumtaz, I. Todd, N. Hopkinson, AlSi12 in-situ alloy formation and residual stress reduction using anchorless selective laser melting. Add. Manuf. 7, 12–19 (2015)

    Google Scholar 

  20. J. Jhabvala, E. Boillat, C. André, R. Glardon, An innovative method to build support structures with a pulsed laser in the selective laser melting process. Int. J. Adv. Manuf. Technol. 59(1–4), 137–142 (2012)

    Article  Google Scholar 

  21. F. Calignano, Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting. Mater. Des. 64, 203–213 (2014)

    Article  Google Scholar 

  22. S. Mohanty, J.H. Hattel, Improving accuracy of overhanging structures for selective laser melting through reliability characterization of single track formation on thick powder beds. in Laser 3D Manufacturing III, vol. 9738, p. 97381B.(2016).

    Google Scholar 

  23. D. Wang, Y. Yang, Z. Yi, X. Su, Research on the fabricating quality optimization of the overhanging surface in SLM process. Int. J. Adv. Manuf. Technol. 65(9–12), 1471–1484 (2013)

    Article  Google Scholar 

  24. K. Zeng, Optimization of support structures for selective laser melting, Ph.D. dissertation, Department of Industrial Engineering, University of Louisville, Kentucky, US, 2015

    Google Scholar 

  25. B.R.D. Thomas, An investigation into the geometric constraints of selective laser melting for the development of design rules, in 9th National Conference on Rapid Design, Prototyping & Manufacture (2008), pp. 11–20

    Google Scholar 

  26. Thomas, The Development of Design Rules for Selective Laser Melting, Ph.D. dissertation, (University of Wales Institute, Cardiff, 2009).

    Google Scholar 

  27. L. Papadakis, A. Loizou, J. Risse, J. Schrage, Numerical computation of component shape distortion manufactured by Selective Laser Melting. Procedia CIRP 18, 90–95 (2014)

    Article  Google Scholar 

  28. T. Craeghs, S. Clijsters, E. Yasa, F. Bechmann, S. Berumen, J.P. Kruth, Determination of geometrical factors in Layerwise Laser Melting using optical process monitoring. Opt. Lasers Eng. 49(12), 1440–1446 (2011)

    Article  Google Scholar 

  29. M. Grasso, V. Laguzza, Q. Semeraro, B.M. Colosimo, In-process monitoring of selective laser melting: spatial detection of defects via image data analysis. J. Manuf. Sci. Eng. 139(5), 51001 (2016)

    Article  Google Scholar 

  30. J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwers, Selective laser melting of iron-based powder. J. Mater. Process. Technol. 149(1–3), 616–622 (2004)

    Article  Google Scholar 

  31. L.N. Carter, M.M. Attallah, R.C. Reed, Laser powder bed fabrication of nickel-base superalloys: influence of parameters; characterisation, quantification and mitigation of cracking, in Superalloys 2012, no. October 2012 (2012), pp. 577–586

    Chapter  Google Scholar 

  32. P.A. Mcnutt, M. Attallah, EngD Thesis An Investigation of Cracking in Laser Metal Deposited Nickel Superalloy CM247LC, no. February (2015)

    Google Scholar 

  33. M.F. Zäh, S. Lutzmann, Modelling and simulation of electron beam melting. Prod. Eng. 4(1), 15–23 (2010)

    Article  Google Scholar 

  34. M.F. Zaeh, M. Kahnert, The effect of scanning strategies on electron beam sintering. Prod. Eng. 3(3), 217–224 (2009)

    Article  Google Scholar 

  35. M. Kahnert, S. Lutzmann, M.F. Zaeh, Layer formations in electron beam sintering, in Proceedings of the 18th Solid Freeform Fabrication Symposium (2007), pp. 88–99

    Google Scholar 

  36. P.A. Kobryn, E.H. Moore, S.L. Semiatin, Effect of laser power and traverse speed on microstructure, porosity, and build height in laser-deposited Ti-6Al-4V. Scr. Mater. 43(4), 299–305 (2000)

    Article  Google Scholar 

  37. A.H. Nickel, D.M. Barnett, F.B. Prinz, Thermal stresses and deposition patterns in layered manufacturing. Mater. Sci. Eng. A 317(1–2), 59–64 (2001)

    Article  Google Scholar 

  38. R. Li, J. Liu, Y. Shi, L. Wang, W. Jiang, Balling behavior of stainless steel and nickel powder during selective laser melting process. Int. J. Adv. Manuf. Technol. 59(9–12), 1025–1035 (2012)

    Article  Google Scholar 

  39. N.K. Tolochko et al., Balling processes during selective laser treatment of powders. Rapid Prototyp. J. 10(2), 78–87 (2004)

    Article  Google Scholar 

  40. X. Zhou, X. Liu, D. Zhang, Z. Shen, W. Liu, Balling phenomena in selective laser melted tungsten. J. Mater. Process. Technol. 222, 33–42 (2015)

    Article  Google Scholar 

  41. K.A. Mumtaz, N. Hopkinson, Selective Laser Melting of thin wall parts using pulse shaping. J. Mater. Process. Technol. 210(2), 279–287 (2010)

    Article  Google Scholar 

  42. K. Mumtaz, N. Hopkinson, Top surface and side roughness of Inconel 625 parts processed using selective laser melting. Rapid Prototyp. J. 15(2), 96–103 (2009)

    Article  Google Scholar 

  43. D. Gu, Y. Shen, Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods. Mater. Des. 30(8), 2903–2910 (2009)

    Article  Google Scholar 

  44. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu, The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61(5), 315–360 (2016)

    Article  Google Scholar 

  45. N.J. Harrison, I. Todd, K. Mumtaz, Reduction of micro-cracking in nickel superalloys processed by Selective Laser Melting: a fundamental alloy design approach. Acta Mater. 94, 59–68 (2015)

    Article  Google Scholar 

  46. K. Kempen, L. Thijs, B. Vrancken, J. Van Humbeeck, J.-P. Kruth, Producing crack-free, high density M2 Hss parts by selective laser melting: pre-heating the baseplate, in Proceedings of the 24th International Solid Freeform Fabrication Symposium (2013), pp. 131–139

    Google Scholar 

  47. W. Huang, J. Chen, X. Lin, T. Wang, H. Yang, The hot cracking mechanism of 316L stainless steel cladding in rapid laser forming process. Rare Met. Mater. Eng. 32(2), 183–186 (2003)

    Google Scholar 

  48. X. Zhao, X. Lin, J. Chen, L. Xue, W. Huang, The effect of hot isostatic pressing on crack healing, microstructure, mechanical properties of Rene88DT superalloy prepared by laser solid forming. Mater. Sci. Eng. A 504, 129–134 (2009)

    Article  Google Scholar 

  49. L.N. Carter, K. Essa, M.M. Attallah, Optimisation of selective laser melting for a high temperature Ni-superalloy. Rapid Prototyp. J. 21(4), 423–432 (2015)

    Article  Google Scholar 

  50. K. Kempen, B. Vrancken, S. Buls, L. Thijs, J. Van Humbeeck, J.-P. Kruth, Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating. J. Manuf. Sci. Eng. 136(6), 61026 (2014)

    Article  Google Scholar 

  51. W.J. Sames, F. Medina, W.H. Peter, S.S. Babu, R.R. Dehoff, Effect of process control and powder quality on Inconel 718 produced using electron beam melting, in 8th International Symposium on Superalloy 718 and Derivatives (2014), pp. 409–423

    Google Scholar 

  52. P. Edwards, A. O’Conner, M. Ramulu, Electron beam additive manufacturing of titanium components: properties and performance. J. Manuf. Sci. Eng. 135(6), 61016 (2013)

    Article  Google Scholar 

  53. H. Gong, K. Rafi, N.V. Karthik, T. Starr, B. Stucker, Defect morphology in Ti-6Al-4V parts fabricated by Selective Laser Melting and Electron Beam Melting, in 24th International SFF Symposium—An Additive Manufacturing Conference, SFF 2013 (2013), pp. 440–453

    Google Scholar 

  54. I. Maskery et al., Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using X-ray computed tomography. Mater. Charact. 111, 193–204 (2016)

    Article  Google Scholar 

  55. S. Tammas-Williams, H. Zhao, F. Léonard, F. Derguti, I. Todd, P.B. Prangnell, XCT analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by Selective Electron Beam Melting. Mater. Charact. 102, 47–61 (2015)

    Article  Google Scholar 

  56. R.J. Smith, M. Hirsch, R. Patel, W. Li, A.T. Clare, S.D. Sharples, Spatially resolved acoustic spectroscopy for selective laser melting. J. Mater. Process. Technol. 236, 93–102 (2016)

    Article  Google Scholar 

  57. J.A. Slotwinski, E.J. Garboczi, K.M. Hebenstreit, Porosity measurements and analysis for metal additive manufacturing process control. J. Res. Natl. Inst. Stand. Technol. 119, 494 (2014)

    Article  Google Scholar 

  58. J.M. Pelletier, A.B. Vannes, M. Pilloz, Residual stresses induced by laser coatings: phenomenological analysis and predictions. J. Mater. Sci. 27, 1240–1244 (1992)

    Google Scholar 

  59. P. Rangaswamy et al., Residual stresses in LENS® components using neutron diffraction and contour method. Mater. Sci. Eng. A 399(1–2), 72–83 (2005)

    Article  Google Scholar 

  60. N.W. Klingbeil, J.L. Beuth, R.K. Chin, C.H. Amon, Residual stress-induced warping in direct metal solid freeform fabrication. Int. J. Mech. Sci. 44(1), 57–77 (2002)

    Article  Google Scholar 

  61. J.P. Kruth, M. Badrossamay, E. Yasa, J. Deckers, L. Thijs, J. Van Humbeeck, Part and material properties in selective laser melting of metals, in 16th International Symposium on Electromachining (ISEM 2010), no. October 2016 (2010), pp. 3–14

    Google Scholar 

  62. J. Mazumder, J. Choi, K. Nagarathnam, J. Koch, D. Hetzner, The direct metal deposition of H13 tool steel for 3-D components. JOM 49(5), 55–60 (1997)

    Article  Google Scholar 

  63. E.R. Denlinger, Thermo-Mechanical Model Development and Experimental Validation for Metallic Parts in Additive Manufacturing by Chair of Committee (The Pennsylvania State University, 2015)

    Google Scholar 

  64. Q.S. Wei, S. Zhang, R.Z. Gui, Cracking behavior and formation mechanism of TC4 alloy formed by selective laser melting. J. Mech. Eng. 49(23), 21–27 (2013)

    Article  Google Scholar 

  65. R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu, W. Jiang, Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Appl. Surf. Sci. 256(13), 4350–4356 (2010)

    Article  Google Scholar 

  66. L. Wang, S.D. Felicelli, P. Pratt, Residual stresses in LENS-deposited AISI 410 stainless steel plates. Mater. Sci. Eng. 496, 234–241 (2008)

    Article  Google Scholar 

  67. A. Vasinonta, J.L. Beuth, M. Griffith, Process maps for predicting residual stress and melt pool size in the laser-based fabrication of thin-walled structures. J. Manuf. Sci. Eng. 129(1), 101 (2007)

    Article  Google Scholar 

  68. D. Buchbinder, W. Meiners, N. Pirch, K. Wissenbach, J. Schrage, Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting. J. Laser Appl. 26(1), 12004 (2014)

    Article  Google Scholar 

  69. P. Mercelis, J. Kruth, Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 12(5), 254–265 (2006)

    Article  Google Scholar 

  70. M. Thöne, S. Leuders, Influence of heat-treatment on selective laser melting products—e.g. Ti6Al4V, in SFF, Austin, Texas (2012), pp. 492–498

    Google Scholar 

  71. T. Sercombe, N. Jones, R. Day, A. Kop, Heat treatment of Ti-6Al-7Nb components produced by selective laser melting. Rapid Prototyp. J. 14(5), 300–304 (2008)

    Article  Google Scholar 

  72. W. Tillmann, C. Schaak, J. Nellesen, M. Schaper, M.E. Aydinöz, K.P. Hoyer, Hot isostatic pressing of IN718 components manufactured by selective laser melting. Add. Manuf. 13, 93–102 (2017)

    Google Scholar 

  73. S.L. Campanelli, N. Contuzzi, A.D. Ludovico, F. Caiazzo, F. Cardaropoli, V. Sergi, Manufacturing and characterization of Ti6Al4V lattice components manufactured by selective laser melting. Materials (Basel) 7(6), 4803–4822 (2014)

    Article  Google Scholar 

  74. W.M. Tucho, P. Cuvillier, A. Sjolyst-Kverneland, V. Hansen, Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment. Mater. Sci. Eng. A 689(December 2016), 220–232 (2017)

    Article  Google Scholar 

  75. B. Song, S. Dong, Q. Liu, H. Liao, C. Coddet, Vacuum heat treatment of iron parts produced by selective laser melting: microstructure, residual stress and tensile behavior. Mater. Des. 54, 727–733 (2014)

    Article  Google Scholar 

  76. M.F. Zaeh, G. Branner, Investigations on residual stresses and deformations in selective laser melting. Prod. Eng. 4(1), 35–45 (2010)

    Article  Google Scholar 

  77. L. van Belle, G. Vansteenkiste, J.C. Boyer, Investigation of residual stresses induced during the selective laser melting process. Key Eng. Mater. 554–557, 1828–1834 (2013)

    Article  Google Scholar 

  78. V. Ocelík, J. Bosgra, J.T.M. de Hosson, In-situ strain observation in high power laser cladding. Surf. Coatings Technol. 203(20–21), 3189–3196 (2009)

    Article  Google Scholar 

  79. A. Plati, J.C. Tan, I.O. Golosnoy, R. Persoons, K. Van Acker, T.W. Clyne, Residual stress generation during laser cladding of steel with a particulate metal matrix composite. Adv. Eng. Mater. 8(7), 619–624 (2006)

    Article  Google Scholar 

  80. I. Yadroitsava, I. Yadroitsev, Residual stress in metal specimens produced by direct metal laser sintering. J. Chem. Inf. Model. 53(9), 1689–1699 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthilkumaran Kumaraguru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anandan Kumar, H., Kumaraguru, S. (2019). Distortion in Metal Additive Manufactured Parts. In: Kumar, L., Pandey, P., Wimpenny, D. (eds) 3D Printing and Additive Manufacturing Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-0305-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0305-0_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0304-3

  • Online ISBN: 978-981-13-0305-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics