Skip to main content

Lignocellulase Formation, Regulation, and Secretion Mechanisms in Hypocrea jecorina (Trichoderma reesei) and Other Filamentous Fungi

  • Chapter
  • First Online:
Fungal Cellulolytic Enzymes

Abstract

Trichoderma reesei is the anamorph form of Hypocrea jecorina (H. jecorina) and belongs to a soft rot ascomycetal fungus that is used in commercial applications, such as the production of enzymes; this fungus is an efficient cell factory for protein production, a property that is exploited by the enzyme industry. The most important property of H. jecorina for commercial applications is that it can secrete a variety of cellulases involved in lignocellulose hydrolysis, a property that has made H. jecorina the most widely used cellulase in the world, producing filamentous fungi for research and other applications. In this chapter, the functions of transcription factors that regulate cellulase and hemicellulase will be introduced, and the expression of cellulases and hemicellulases regulated by chromatin remodeling will also be discussed. Furthermore, the transcriptional regulation of cellulase and hemicellulase in H. jecorina by external signals will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam MA, Kelly JM (2017) Proteins interacting with CreA and CreB in the carbon catabolite repression network in Aspergillus nidulans. Curr Genet 63(4):669–683

    Article  CAS  PubMed  Google Scholar 

  • Aro N, Saloheimo A, Ilmén M, Penttilä M (2001) ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J Biol Chem 276(26):24309–24314

    Article  CAS  PubMed  Google Scholar 

  • Aro N, Ilmen M, Saloheimo A, Penttila M (2003) ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl Environ Microbiol 69(1):56–65

    Google Scholar 

  • Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Brausstromeyer S, Kwon NJ, Keller NP, Yu JH (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320(5882):1504

    Article  CAS  PubMed  Google Scholar 

  • Bernhard S, Druzhinina IS, Levente K, Lukas H, Erzsébet S, Erzsébet F, Lea A, Rita L, Antoine M, Thomas P (2011) The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics 12(1):269

    Article  CAS  Google Scholar 

  • Bischof RH, Ramoni J, Seiboth B (2016) Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Factories 15(1):106

    Article  CAS  Google Scholar 

  • Boase NA, Kelly JM (2004) A role for creD, a carbon catabolite repression gene from Aspergillus nidulans, in ubiquitination. Mol Microbiol 53(3):929–940

    Google Scholar 

  • Boël G, Mijakovic I, Mazé A, Poncet S, Taha MK, Larribe M, Darbon E, Khemiri A, Galinier A, Deutscher J (2003) Transcription regulators potentially controlled by HPr kinase/phosphorylase in gram-negative bacteria. J Mol Microbiol Biotechnol 5(4):206–215

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Zheng F, Wang L, Zhao G, Chen G, Zhang W, Liu W (2017) Rce1, a novel transcriptional repressor, regulates cellulase gene expression by antagonizing the transactivator Xyr1 in Trichoderma reesei. Mol Microbiol 105(1):65–83

    Article  CAS  PubMed  Google Scholar 

  • Castellanos F, Schmoll M, Martinez P, Tisch D, Kubicek CP, Herrera-Estrella A, Esquivel-Naranjo EU (2010) Crucial factors of the light perception machinery and their impact on growth and cellulase gene transcription in Trichoderma reesei. Fungal Genet Biol 47(5):468–476

    Article  CAS  PubMed  Google Scholar 

  • Chambergo FS, Bonaccorsi ED, Ferreira AJ, Ramos AS, Ferreira JR, Abrahao-Neto J, Farah JPS, El-Dorry H (2002) Elucidation of the metabolic fate of glucose in the filamentous fungus Trichoderma reesei using expressed sequence tag (EST) analysis and cDNA microarrays. J Biol Chem 277(16):13983–13988

    Article  CAS  PubMed  Google Scholar 

  • Coradetti ST, Glass NL (2012) Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proc Natl Acad Sci USA 109(19):7397–7402

    Article  PubMed  Google Scholar 

  • Coradetti ST, Craig JP, Xiong Y, Shock T, Tian CG, Glass NL (2012) Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proc Natl Acad Sci USA 109(19):7397–7402

    Article  PubMed  Google Scholar 

  • Coradetti ST, Xiong Y, Glass NL (2013) Analysis of a conserved cellulase transcriptional regulator reveals inducer-independent production of cellulolytic enzymes in Neurospora crassa. Microbiologyopen 2(4):595–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corrochano LM (2007) Fungal photoreceptors: sensory molecules for fungal development and behaviour. Photochem Photobiol Sci 6(7):725–736

    Article  CAS  PubMed  Google Scholar 

  • Csordas A (1990) On the biological role of histone acetylation. Biochem J 265(1):23–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cziferszky A, Mach RL, Kubicek CP (2002) Phosphorylation positively regulates DNA binding of the carbon catabolite repressor Cre1 of Hypocrea jecorina (Trichoderma reesei). J Biol Chem 277(17):14688–14694

    Google Scholar 

  • De Vit MJ, Waddle JA, Johnston M (1997) Regulated nuclear translocation of the Mig1 glucose repressor. Mol Biol Cell 8(8):1603–1618

    Article  PubMed  PubMed Central  Google Scholar 

  • Denton JA, Kelly JM (2011) Disruption of Trichoderma reesei cre2, encoding an ubiquitin C-terminal hydrolase, results in increased cellulase activity. BMC Biotechnol 11(1):103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deutscher J, Küster E, Bergstedt U, Charrier V, Hillen W (1995) Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol Microbiol 15(6):1049–1053

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos Castro L, Pedersoli WR, Antonieto AC, Steindorff AS, Silva-Rocha R, Martinez-Rossi NM, Rossi A, Brown NA, Goldman GH, Faca VM, Persinoti GF, Silva RN (2014) Comparative metabolism of cellulose, sophorose and glucose in Trichoderma reesei using high-throughput genomic and proteomic analyses. Biotechnol Biofuels 7(1):41

    Google Scholar 

  • Dowzer CE, Kelly JM (1989) Cloning of the creA gene from Aspergillus nidulans: a gene involved in carbon catabolite repression. Curr Genet 15(6):457–459

    Article  CAS  PubMed  Google Scholar 

  • Drysdale MR, Kolze SE, Kelly JM (1993) The Aspergillus niger carbon catabolite repressor encoding gene, creA. Gene 130(2):241–245

    Article  CAS  PubMed  Google Scholar 

  • Eibinger M, Ganner T, Bubner P, Rosker S, Kracher D, Haltrich D, Ludwig R, Plank H, Nidetzky B (2014) Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency. J Biol Chem 289(52):35929–35938

    Google Scholar 

  • El-Gogary S, Leite A, Crivellaro O, Eveleigh D, El-Dorry H (1989) Mechanism by which cellulose triggers cellobiohydrolase I gene expression in Trichoderma reesei. Proc Natl Acad Sci USA 86(16):6138–6141

    Article  CAS  PubMed  Google Scholar 

  • Georgakopoulos T, Thireos G (1992) Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J 11(11):4145–4152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Häkkinen M, Valkonen MJ, Westerholm-Parvinen A, Aro N, Arvas M, Vitikainen M, Penttilä M, Saloheimo M, Pakula TM (2014) Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production. Biotechnol Biofuels 7(1):14

    Google Scholar 

  • Ilmen M, Thrane C, Penttila M (1996) The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full-length and a truncated mutant form. Mol Gen Genet 251(4):451–460

    PubMed  CAS  Google Scholar 

  • Ivanova C, Ramoni J, Aouam T, Frischmann A, Seiboth B, Baker SE, Crom S, Lemoine S, Margeot A, Bidard F (2017) Genome sequencing and transcriptome analysis of Trichoderma reesei QM9978 strain reveals a distal chromosome translocation to be responsible for loss of vib1 expression and loss of cellulase induction. Biotechnol Biofuels 10(1):209

    Article  PubMed  PubMed Central  Google Scholar 

  • Karimi AR, Németh Z, Atanasova L, Fekete E, Paholcsek M, Sándor E, Aquino B, Druzhinina IS, Karaffa L, Kubicek CP (2014) The VELVET A orthologue VEL1 of Trichoderma reesei regulates fungal development and is essential for cellulase gene expression. PLoS One 9(11):e112799

    Article  CAS  Google Scholar 

  • Karimiaghcheh R, Jin WB, Phatale PA, Smith KM, Baker SE, Lichius A, Omann M, Zeilinger S, Seiboth B, Rhee C (2013) Functional analyses of Trichoderma reesei LAE1 reveal conserved and contrasting roles of this regulator. G3 Genes Genet 3(2):369–378

    CAS  Google Scholar 

  • Kubicek CP (2013) Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J Biotechnol 163(2):133–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Yao G, Wu R, Gao L, Kan Q, Liu M, Yang P, Liu G, Qin Y, Song X (2015) Synergistic and dose-controlled regulation of cellulase gene expression in Penicillium oxalicum. PLoS Genet 11(9):e1005509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Dong Y, Wang F, Jiang B, Wang M, Fang X (2016) Regulation of cellulase expression, sporulation, and morphogenesis by velvet family proteins in Trichoderma reesei. Appl Microbiol Biotechnol 100(2):769–779

    Article  CAS  PubMed  Google Scholar 

  • Lockington RA, Kelly JM (2001) Carbon catabolite repression in Aspergillus nidulans involves deubiquitination. Mol Microbiol 40(6):1311–1321

    Article  CAS  PubMed  Google Scholar 

  • Lockington RA, Kelly JM (2002) The WD40-repeat protein CreC interacts with and stabilizes the deubiquitinating enzyme CreB in vivo in Aspergillus nidulans. Mol Microbiol 43(5):1173–1182

    Google Scholar 

  • Margolles-Clark E, Ihnen M, Penttilä M (1997) Expression patterns of ten hemicellulase genes of the filamentous fungus Trichoderma reesei on various carbon sources. J Biotechnol 57(1–3):167–179

    Article  CAS  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553–560

    Article  CAS  PubMed  Google Scholar 

  • Mello-de-Sousa TM, Rassinger A, Pucher ME, dos Santos Castro L, Persinoti GF, Silva-Rocha R, Pocas-Fonseca MJ, Mach RL, Nascimento Silva R, Mach-Aigner AR (2015) The impact of chromatin remodelling on cellulase expression in Trichoderma reesei. BMC Genomics 16:588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakarisetälä T, Paloheimo M, Kallio J, Vehmaanperä J, Penttilä M, Saloheimo M (2009) Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production. Appl Environ Microbiol 75(14):4853

    Article  CAS  Google Scholar 

  • Nguyen EV, Imanishi SY, Haapaniemi P, Yadav A, Saloheimo M, Corthals GL, Pakula TM (2016) Quantitative site-specific phosphoproteomics of Trichoderma reesei signaling pathways upon induction of hydrolytic enzyme production. J Proteome Res 15(2):457–467

    Article  CAS  PubMed  Google Scholar 

  • Nitta M, Furukawa T, Shida Y, Mori K, Kuhara S, Morikawa Y, Ogasawara W (2012) A new Zn(II)2Cys6-type transcription factor BglR regulates β-glucosidase expression in Trichoderma reesei. Fungal Genet Biol 49(5):388–397

    Google Scholar 

  • Portnoy T, Margeot A, Seidl-Seiboth V, Le Crom S, Ben Chaabane F, Linke R, Seiboth B, Kubicek CP (2011) Differential regulation of the cellulase transcription factors XYR1, ACE2, and ACE1 in Trichoderma reesei strains producing high and low levels of cellulase. Eukaryot Cell 10(2):262–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauscher R, Wurleitner E, Wacenovsky C, Aro N, Stricker AR, Zeilinger S, Kubicek CP, Penttila M, Mach RL (2006) Transcriptional regulation of xyn1, encoding xylanase I, in Hypocrea jecorina. Eukaryot Cell 5(3):447–456

    Google Scholar 

  • Ries L, Belshaw NJ, Ilmén M, Penttilä ME, Alapuranen M, Archer DB (2013) The role of CRE1 in nucleosome positioning within the cbh1 promoter and coding regions of Trichoderma reesei. Appl Microbiol Biotechnol 98(2):749–762

    Article  CAS  PubMed  Google Scholar 

  • Saloheimo M, Pakula TM (2012) The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Microbiology 158(1):46–57

    Google Scholar 

  • Saloheimo A, Aro N, Ilmén M, Penttilä M (2000) Isolation of the ace1 gene encoding a Cys2-His2 transcription factor involved in regulation of activity of the cellulase promoter cbh1of Trichoderma reesei. J Biol Chem 275(8):5817–5825

    Google Scholar 

  • Samuels GJ (1996) Trichoderma: a review of biology and systematics of the genus. Mycol Res 100(8):923–935

    Article  Google Scholar 

  • Sarah Macpherson ML, Turcotte B (2006) A fungal family of transcriptional regulators: The zinc cluster proteins. Microbiol Mol Biol Rev 70(3):583–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmoll M, Kubicek CP (2003) Regulation of Trichoderma cellulase formation: lessons in molecular biology from an industrial fungus. Acta Microbiol Immunol Hung 50(2–3):125–145

    Article  CAS  PubMed  Google Scholar 

  • Schmoll M, Franchi L, Kubicek CP (2005) Envoy, a PAS/LOV domain protein of Hypocrea jecorina (Anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryot Cell 4(12):1998–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmoll M, Schuster A, do Nascimento Silva R, Kubicek CP (2009) The G-alpha protein GNA3 of Hypocrea jecorina (anamorph Trichoderma reesei) regulates cellulase gene expression in the presence of light. Eukaryot Cell 8(3):410–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster A, Kubicek CP, Friedl MA, Druzhinina IS, Schmoll M (2007) Impact of light on Hypocrea jecorina and the multiple cellular roles of ENVOY in this process. BMC Genomics 8(1):449

    Google Scholar 

  • Schuster A, Tisch D, Seidl-Seiboth V, Kubicek CP, Schmoll M (2012) Roles of protein kinase A and adenylate cyclase in light-modulated cellulase regulation in Trichoderma reesei. Appl Environ Microbiol 78(7):2168–2178

    Google Scholar 

  • Seibel C, Gremel G, do Nascimento Silva R, Schuster A, Kubicek CP, Schmoll M (2009) Light-dependent roles of the G-protein α subunit GNA1 of Hypocrea jecorina (anamorph Trichoderma reesei). BMC Biol 7(1):58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seiboth B, Karimi RA, Phatale PA, Linke R, Hartl L, Sauer DG, Smith KM, Baker SE, Freitag M, Kubicek CP (2012) The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei. Mol Microbiol 84(6):1150–1164

    Google Scholar 

  • Strauss J, Mach RL, Zeilinger S, Hartler G, Stoffler G, Wolschek M, Kubicek CP (1995) Cre1, the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett 376(1–2):103–107

    Article  CAS  PubMed  Google Scholar 

  • Stricker AR, Grosstessner-Hain K, Wurleitner E, Mach RL (2006) Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot Cell 5(12):2128–2137

    Google Scholar 

  • Stricker AR, Mach RL, de Graaff LH (2008a) Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl Microbiol Biotechnol 78(2):211–220

    Google Scholar 

  • Stricker AR, Trefflinger P, Aro N, Penttilä M, Mach RL (2008b) Role of Ace2 (activator of cellulases 2) within the xyn2 transcriptosome of Hypocrea jecorina. Fungal Genet Biol 45(4):436–445

    Article  CAS  PubMed  Google Scholar 

  • Stülke J, Hillen W (1999) Carbon catabolite repression in bacteria. Curr Opin Microbiol 2(2):195

    Article  PubMed  Google Scholar 

  • Tisch D, Kubicek CP, Schmoll M (2011a) New insights into the mechanism of light modulated signaling by heterotrimeric G-proteins: ENVOY acts on gna1 and gna3 and adjusts cAMP levels in Trichoderma reesei (Hypocrea jecorina). Fungal Genet Biol 48(6):631–640

    Google Scholar 

  • Tisch D, Kubicek CP, Schmoll M (2011b) The phosducin-like protein PhLP1 impacts regulation of glycoside hydrolases and light response in Trichoderma reesei. BMC Genomics 12(1):613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treitel MA, Kuchin S, Carlson M (1998) Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol Cell Biol 18(11):6273–6280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Liu L, Berger SL (1998) Critical residues for histone acetylation by Gcn5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. Genes Dev 12(5):640–653

    Google Scholar 

  • Wang M, He D, Liang Y, Liu K, Jiang B, Wang F, Hou S, Fang X (2013a) Factors involved in the response to change of agitation rate during cellulase production from Penicillium decumbens JUA10-1. J Ind Microbiol Biot 40(9):1077–1082

    Google Scholar 

  • Wang F, Liang Y, Wang M, Yang H, Liu K, Zhao Q, Fang X (2013b) Functional diversity of the p24γ homologue Erp reveals physiological differences between two filamentous fungi. Fungal Genet Biol 61:15–22 

    Google Scholar 

  • Wang M, Zhao Q, Yang J, Jiang B, Wang F, Liu K, Xu F (2013c) A mitogen-activated protein kinase Tmk3 participates in high osmolarity resistance, cell wall integrity maintenance and cellulase production regulation in Trichoderma reesei. PLoS One 8(8):e72189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Dong Y, Zhao Q, Wang F, Liu K, Jiang B, Fang X (2014) Identification of the role of a MAP kinase Tmk2 in Hypocrea jecorina (Trichoderma reesei). Sci Rep 4(4):6732

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang M, Zhang M, Li L, Dong Y, Jiang Y, Liu K, Zhang R, Jiang B, Niu K, Fang X (2017) Role of Trichoderma reesei mitogen-activated protein kinases (MAPKs) in cellulase formation. Biotechnol Biofuels 10(1):99

    Google Scholar 

  • Xin Q, Gong Y, Lv X, Chen G, Liu W (2013) Trichoderma reesei histone acetyltransferase Gcn5 regulates fungal growth, conidiation and cellulase gene expression. Curr Microbiol 67(5):580–589

    Google Scholar 

  • Xiong Y, Sun JP, Glass NL (2014) VIB1, a link between glucose signaling and carbon catabolite repression, is essential for plant cell wall degradation by Neurospora crassa. PLoS Genet 10(8):e1004500

    Google Scholar 

  • Zeilinger S, Ebner A, Marosits T, Mach R, Kubicek CP (2001) The Hypocrea jecorina HAP 2/3/5 protein complex binds to the inverted CCAAT-box (ATTGG) within the cbh2 (cellobiohydrolase II-gene) activating element. Mol Gen Genomics 266(1):56–63

    Article  CAS  Google Scholar 

  • Zeilinger S, Schmoll M, Pail M, Mach RL, Kubicek CP (2003) Nucleosome transactions on the Hypocrea jecorina (Trichoderma reesei) cellulase promoter cbh2 associated with cellulase induction. Mol Gen Genomics 270(1):46–55

    Google Scholar 

  • Zhou G, Lü J, Li Z, Li J, Wang M, Qu Y, Xiao L, Qin S, Zhao H, Xia R (2012) Enhanced cellulase production of Penicillium decumbens by knocking out CreB encoding a deubiquitination enzyme. Chin J Biotechnol 28(8):959–972

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (NO.31570040), the Fundamental Research Funds of Shandong University (No.2016JC031), and the 111 Project (B16030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, Y. et al. (2018). Lignocellulase Formation, Regulation, and Secretion Mechanisms in Hypocrea jecorina (Trichoderma reesei) and Other Filamentous Fungi. In: Fang, X., Qu, Y. (eds) Fungal Cellulolytic Enzymes. Springer, Singapore. https://doi.org/10.1007/978-981-13-0749-2_3

Download citation

Publish with us

Policies and ethics