Skip to main content

Inherited Competitive Swarm Optimizer for Large-Scale Optimization Problems

  • Conference paper
  • First Online:
Harmony Search and Nature Inspired Optimization Algorithms

Abstract

In this paper, a new Inherited Competitive Swarm Optimizer (ICSO) is proposed for solving large-scale global optimization (LSGO) problems. The algorithm is basically motivated by both the human learning principles and the mechanism of competitive swarm optimizer (CSO). In human learning principle, characters pass on from parents to the offspring due to the ‘process of inheritance’. This concept of inheritance is integrated with CSO for faster convergence where the particles in the swarm undergo through a tri-competitive mechanism based on their fitness differences. The particles are thus divided into three groups namely winner, superior loser, and inferior loser group. In each instances, the particles in the loser group are guided by the winner particles in a cascade manner. The performance of ICSO has been tested over CEC2008 benchmark problems. The statistical analysis of the empirical results confirms the superiority of ICSO over many state-of-the-art algorithms including the basic CSO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  2. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In: Proceedings of International Conference on Machine Learning, pp. 412–420. Morgan Kaufmann Publishers (1997)

    Google Scholar 

  3. Chen, W.N., Zhang, J., Lin, Y., Chen, E.: Particle swarm optimization with an aging leader and challengers. IEEE Trans. Evol. Comput. 17(2), 241–258 (2013)

    Article  Google Scholar 

  4. Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8(3), 240–255 (2004)

    Article  Google Scholar 

  5. Zhan Z.-H., Zhang, J., Li, Y., Chung, H.-H.: Adaptive particle swarm optimization. IEEE Trans. Systems Man Cybern. B Cybern. 39(6), 1362–1381 (2009)

    Google Scholar 

  6. Hu, M., Wu, T., Weir, J.D.: An adaptive particle swarm optimization with multiple adaptive methods. IEEE Trans. Evol. Comput. 17(5), 705–720 (2013)

    Article  Google Scholar 

  7. Juang C.-F.: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Systems Man Cybern. B Cybern. 34(2), 997–1006 (2004)

    Google Scholar 

  8. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)

    Article  Google Scholar 

  9. Liang, J.J., Qin, A., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)

    Article  Google Scholar 

  10. Cheng, R., Sun, C., Jin, Y.: A multi-swarm evolutionary framework based on a feedback mechanism. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 718–724. IEEE (2013)

    Google Scholar 

  11. Goh, C., Tan, K., Liu, D., Chiam, S.: A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design. Eur. J. Oper. Res. 202(1), 42–54 (2010)

    Article  Google Scholar 

  12. Hartmann, S.: A competitive genetic algorithm for resource-constrained project scheduling. Naval Res. Logistics (NRL) 45(7), 733–750 (1998)

    Article  MathSciNet  Google Scholar 

  13. Whitehead, B., Choate, T.: Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction. IEEE Trans. Neural Netw. 7(4), 869–880 (1996)

    Article  Google Scholar 

  14. Ran, C., Yaochu, J.: A competitive swarm optimizer for large scale optimization. IEEE Trans. Cybern. 45(2), 191–204 (2015)

    Article  Google Scholar 

  15. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  16. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85(6), 317–325 (2003)

    Article  MathSciNet  Google Scholar 

  17. Tseng, L.-Y., Chen, C.: Multiple trajectory search for large scale global optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 3052–3059. IEEE (2008)

    Google Scholar 

  18. LaTorre, A., Muelas, S., Pena, J.M.: Large scale global optimization: experimental results with MOS-based hybrid algorithms. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2013)

    Google Scholar 

  19. Potter, M.A., Jong, K.A.D.: A cooperative coevolutionary approach to function optimization. In: Proceedings of the International Conference on Evolutionary Computation, pp. 249–257 (1994)

    Google Scholar 

  20. Yang, Z., Tang, K., Yao, X.: Differential evolution for high-dimensional function optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 3523–3530. IEEE (2007)

    Google Scholar 

  21. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178(15), 2985–2999 (2008)

    Article  MathSciNet  Google Scholar 

  22. Yang, Z., Tang, K., Yao, X.: Multilevel cooperative coevolution for large scale optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1663–1670. IEEE (2008)

    Google Scholar 

  23. Li, X., Yao, Y.: Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans. Evol. Comput. 16(2), 1–15 (2011)

    Google Scholar 

  24. Liu, J., Tang, K.: Scaling up covariance matrix adaptation evolution strategy using cooperative coevolution. In: Proceedings of International Conference on Intelligent Data Engineering and Automated Learning, pp. 350–357. Springer (2013)

    Google Scholar 

  25. Liang, J., Suganthan, P.: Dynamic multi-swarm particle swarm optimizer. In: Proceedings of IEEE Swarm Intelligence Symposium, pp. 124–129. IEEE (2005)

    Google Scholar 

  26. LaTorre, A., Muelas, S., Peña, J.-M.: A MOS-based dynamic memetic differential evolution algorithm for continuous optimization: a scalability test. Soft. Comput. 15(11), 2187–2199 (2011)

    Article  Google Scholar 

  27. Yang, Z., Tang, K., Yao, X.: Scalability of generalized adaptive differential evolution for large-scale continuous optimization. Soft. Comput. 15, 2141–2155 (2011)

    Article  Google Scholar 

  28. Brest, J., Maucec, M.S.: Self-adaptive differential evolution algorithm using population size reduction and three strategies. Soft. Comput. 15(11), 2157–2174 (2011)

    Article  Google Scholar 

  29. Hsieh, S.-T., Sun, T.-Y., Liu, C.-C., Tsai, S.-J.: Solving large scale global optimization using improved particle swarm optimizer. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1777–1784. IEEE (2008)

    Google Scholar 

  30. Mohapatra, P., Das, K.N., Roy, S.: A modified competitive swarm optimizer for large scale optimization problems. Appl. Soft Comput. 59, 340–362 (2017)

    Article  Google Scholar 

  31. Tanweer, M.R., Suresh, S., Sundararajan, N.: Human meta-cognition inspired collaborative search algorithm for optimization. In: Proceedings of the IEEE International Conference on Multisensor Fusion and Information Integration for Intelligent Systems, pp. 1–6. IEEE (2014)

    Google Scholar 

  32. Shi, Y.: Brain storm optimization algorithm. An optimization algorithm based on brainstorming process. Int. J. Swarm Intell. Res. (IJSIR) 2(4), 35–62 (2011)

    Google Scholar 

  33. Olorunda, O., Engelbrecht, A.P.: Measuring exploration/exploitation in particle swarms using swarm diversity. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1128–34. IEEE (2008)

    Google Scholar 

  34. Ros, R., Hansen, N.: A simple modification in cma-es achieving linear time and space complexity. In: Parallel Problem Solving from Nature–PPSN X, pp. 296–305 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhujit Mohapatra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohapatra, P., Das, K.N., Roy, S. (2019). Inherited Competitive Swarm Optimizer for Large-Scale Optimization Problems. In: Yadav, N., Yadav, A., Bansal, J., Deep, K., Kim, J. (eds) Harmony Search and Nature Inspired Optimization Algorithms. Advances in Intelligent Systems and Computing, vol 741. Springer, Singapore. https://doi.org/10.1007/978-981-13-0761-4_9

Download citation

Publish with us

Policies and ethics