Skip to main content

Role of Fungi in Dye Removal

  • Chapter
  • First Online:
Phytobiont and Ecosystem Restitution

Abstract

Rapid urbanization and industrialization result in the discharge of harmful and toxic waste into the water bodies which are not easy to degrade thereby causing environmental pollution. Out of so many waste discharges, dye waste is noxious for aquatic life and for human as well; therefore, removal of these toxic compounds from water is one of the major environmental concerns today. The reported methodology like chemical and physical process is often costly, requires higher energy, and is not eco-friendly. In today’s world, biological methods are trying to minimize pollution by environment-friendly way. Mycoremediation is one of the techniques which is effective and affordable for degradation and decolorization of dye-bearing effluents. The chapter concludes the potential of mycoremediation in dye removal, its mechanism, and optimizing the conditions for efficient removal of dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco-Paula A, Gubitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsute. Appl Environ Microbiol 66:3357–3362

    Article  CAS  Google Scholar 

  • Acuner E, Dilek FB (2004) Treatment of tectilon yellow 2G by Chlorella vulgaris. Process Biochem 39:623–663

    Article  CAS  Google Scholar 

  • Ainsworth GC (1973) Introduction and keys to higher taxa. The fungi. An advance treaties IV V: a taxonomic review with keys, Ainsworth GC, Sparrow FK, Sussman AS. New York: Academic 1–7

    Google Scholar 

  • Aksu Z (2005) Application of biosorption for the removal of organic pollutants: (review). Process Biochem 40:997–1026

    Article  CAS  Google Scholar 

  • Aksu Z, Donmez G (2003) A comparative study on the biosorption characteristics of some yeasts for Remazol Blue reactive dye. Chemosphere 50:1075–1083

    Article  CAS  Google Scholar 

  • Almeida EJR, Corso CR (2014) Comparative study of toxicity of azo dye Procion red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus. Chemosphere 112:317–322

    Article  CAS  Google Scholar 

  • Annadurai G, Chellapandian M, Krishnan MRV (1999) Adsorption of reactive dye on chitin. Environ Monit Assess 59:111–119

    Article  CAS  Google Scholar 

  • Arumugam SR, Dasary SSR, Venkatraman R, Fronczek FR (2011) Acta Cryst 67:1409–1410

    Google Scholar 

  • Chander M, Arora DS (2007) Evaluation of some white rot fungi for their potential to decolorize industrial dyes. Dyes Pigments 72:192–198

    Article  CAS  Google Scholar 

  • Chang JS, Kuo TS, Chao YP, Ho JY, Lin PJ (2000) Azo dye decolorization with a mutant Escherichia coli starin. Biotechnol Lett 22:807–812

    Article  CAS  Google Scholar 

  • Chang JS, Chou C, Lin Y, Ho J, Hu TL (2001) Kinetics characteristics of bacterial azo dye decolorization by Pseudomonas luteola. Water Res 35:2841–2850

    Article  CAS  Google Scholar 

  • Chang CJ, Lin CS, Lu CC, Martel J, Ko YF, Ojcius DM, Tseng SF, Wu TR, Chen YY, Young JD, Lai HC (2015) Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun 23:7489–7494

    Article  Google Scholar 

  • Chen KC, Wu JY, Liou DJ, Hwang SCJ (2003) Decolorization of the textile dyes by newly isolated bacterial strains. J Biotechnol 101:57–68

    Article  CAS  Google Scholar 

  • Chen CY, Baker SC, Darton RC (2005) Batch production of biosurfactant with foam fractionation. J Chem Technol Biotechnol 81:1923–1931

    Article  Google Scholar 

  • Conneely A, Smyth WF, McMullan G (2002) Study of the white-rot fungal degradation of selected phthalocyanine dyes by capillary electrophoresis and liquid chromatography. Anal Chim Acta 451:259–270

    Article  CAS  Google Scholar 

  • Couto SR (2009) Dye removal by immobilized fungi. Biotechnol Adv 27:227–235

    Article  Google Scholar 

  • De las Marías PM (1976) Química y física de las fibras textiles. Editorial Alhambra SA, Madrid

    Google Scholar 

  • Diwanian S, Kharb D, Raghukumar C, Kuhad RC (2010) Decolorization of synthetic dyes and textile effluents by basidiomycetous fungi. Water Air Soil Pollut 210:409–419

    Article  Google Scholar 

  • Dixit CB, Patel HM (2010) Synthesis characterization and printing application solvent dye based on 2-Hydroxy-4n-octycoxy benzophenone. E J Chem 8:615–620

    Article  Google Scholar 

  • Fernandez C, Larrechi MS, Callao MP (2010) An analytical overview of processes for removing organic dyes from wastewater effluents. Trends Anal Chem 29:1202–1211

    Article  CAS  Google Scholar 

  • Fouriner D, Halasz A, Jim S, Spanggord RJ, Bottaro JC, Hawari J (2004) Biodegradation of Hexahydro 1,3,5-Trintro-1,3,5-Triazine ring cleavage product 4-Nitro-2,4-Diazabutanal by Phanerochaete Chrysosporium. Appl Environ Microbiol 70:1123–1128

    Article  Google Scholar 

  • Fu Y, Viraraghavan T (2002) Removal of Congo Red from an aqueous solution by fungus Aspergillus niger. Adv Environ Res 7:239–247

    Article  CAS  Google Scholar 

  • Golka K, Kopps S, Myslak ZW (2004) Carcinogenicity of azo colorants: influence of solubility and bioavailability. Toxicol Lett 151:203–210

    Article  CAS  Google Scholar 

  • Gomes K (2009) Waste water management. Global Media, Jaipur, pp 288–289

    Google Scholar 

  • Gou JB, Zhou JT, Wang D, Tian CP, Wang P, Uddin MS, Yu H (2009) Biocatalyst effects of immobilized anthraquinone on the anaerobic reduction of azo dyes by the salt-tolerant bacteria. Water Res 41:426–428

    Google Scholar 

  • Gulay B, Hakan EM, Yakup MA (2007) Studies of adsorption of alkaline trypsin by poly (methacrylic acid) brushes on chitosan membranes. J Hazard Mater 108:456–465

    Google Scholar 

  • Gupta VK, Mittal A, Krishnan L, Gajbe V (2006) Adsorption kinetics and column operations for the removal and recovery of malachite green from wastewater using bottom ash. Sep Purif Technol 40:87–96

    Article  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192

    Article  CAS  Google Scholar 

  • Ingamells W (1993) Colour for textiles a user’s handbook, vol 32. Society of Dyers and Colourist, West Yorkshire, pp 38–42

    Google Scholar 

  • Iqbal M, Saeed A (2007) Biosorption of reactive dye by loofa sponge-immobilized fungal biomass of Phanerochaete chrysosporium. Process Biochem 42:1160–1164

    Article  CAS  Google Scholar 

  • Jin X, Liu G, Xu Z, Tao W (2007a) Decolourisation of a dye industry effluent by aspergillus fumigatus XC6. Appl Microbiol Biotechnol 74:239–242

    Article  CAS  Google Scholar 

  • Jin X, Liu G, Xu Z, Yao W (2007b) Decolorization of a dye industry effluent by Aspergillus fumigatus. Appl Microbiol Biotech 74:239–243

    Article  CAS  Google Scholar 

  • Kalyanaraman K, Vaithilingam S (2015) Hydrothermal synthesis of ZnS/CdS/Ag2S nanocatalysts for photocatalytic degradation of Congo red under direct sunlight illumination. RSC Adv. https://doi.org/10.1039/C5RA16242D

  • Kaushik P, Malik A (2010) Fungal dye decolorization: recent advances and future potential. Environ Int 35:127–141

    Article  Google Scholar 

  • Kim SJ, Shoda M (1999) Purification and characterization of a novel peroxidase from Geotrichum candidum Dec 1 involved in decolorization of dyes. Appl Environ Microbiol 65:1029–1035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirby N, Marchant R, McMullan G (2000) Decolourization of synthetic textile dyes by Phlebia tremellosa. FEMS Microbiol Lett 188:93–96

    Article  CAS  Google Scholar 

  • Knapp JS, Newby PS (1999) The decolourization of a chemical industry effluent by white rot fungi. Water Res 33:575–577

    Article  CAS  Google Scholar 

  • Kubilay YE (2009) Dye treatment with fungi: Azo dye decolorization by Phanerochaete chrysosporium. VDM Verlag Dr. Müller, Ulm, pp 184–188

    Google Scholar 

  • Kuhad RC, Sood N, Tripathi KK, Singh A, Ward OP (2004) Developments in microbial methods for the treatments of dye effluents. Adv Appl Microbiol 56:185–213

    Article  CAS  Google Scholar 

  • Kumari K, Abraham TE (2007) Biosorption of anionic textile dyes by nonviable biomass of fungi and yeast. Bioresour Technol 98:1704–1710

    Article  CAS  Google Scholar 

  • Lima SFI, Timossi PCI, Almeida DP, Silva UR (2014) Weed suppression in the formation of Brachiaria under three sowing methods. Planta Daninha 32:699–707

    Article  Google Scholar 

  • Lin SH, Liu WY (1994) Continuous treatment of textile water by ozonation and coagulation. J Environ Eng 120:437–446

    Article  CAS  Google Scholar 

  • Lu H, Leung HT, Wang N, Pak WL, Shieh BH (2009) Role of Ca2+/calmodulin-dependent protein kinase II in drosophila photoreceptors. J Biol Chem 284:11100–11109

    Article  CAS  Google Scholar 

  • Mahony OT, Guibal E, Tobin JM (2002) Reactive dye biosorption by Rhizopus arrhizus biomass. Enzym Microb Technol 31:456–463

    Article  Google Scholar 

  • Makela MR, Lundell T, Hatakka A, Hilden K (2013) Effect of copper, nutrient nitrogen, and wood-supplement on the production of lignin-modifying enzymes by the white-rot fungus Phlebia radiata. Fungal Biol 117:62–70

    Article  CAS  Google Scholar 

  • Mathur N, Bhatnagar P (2007) Mutagenicity assessment of textile dyes from Sanganer (Rajasthan). J Environ Biol 28:123–126

    CAS  PubMed  Google Scholar 

  • Maurya NS, Mittal AK, Cornel P, Rother E (2006) Biosorption of dyes using dead macro fungi: effect of dye structure, ionic strength. Bioresour Technol 97:512–521

    Article  CAS  Google Scholar 

  • Michael J (1993) Motivative operations. Behav Anal 6:191–206

    Article  Google Scholar 

  • Muhammad A, Farina J, Hafiz N (2009) Bioremediation potential of mixed white rot culture of Pleurotus Ostreatus IBL-02 and Coriolus versicolor IBL-04 for textile industry wastewater. J Bioremed Biodegr. https://doi.org/10.4172/2155-6199.S1-007

  • Novotny C, Dias N, Kapanen A, Malachova K, Vandrovcova M, Itavarra M, Lima N (2006) Comparative use of bacterial, algal and protozoan tests to study toxicity of azo and anthraquinone dyes. Chemosphere 63:1436–1442

    Article  CAS  Google Scholar 

  • O’Neill C, Hawkes FR, Hawkes DL, Lourenco HM, Pinheiro DW (1999) In textile effluents-sources, measurement, discharge consents and simulation (review). J Chem Technol Biotechnol 74:1009–1018

    Article  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  CAS  Google Scholar 

  • Paszczynski A, Pasti MB, Goszczynski SD, Crawford DL, Crawford RL (1991) New approach to improve degradation of recalcitrant azo dyes by Streptomyces spp. and Phanerochaete chrysosporium. Enzym Microb Technol 13:378–384

    Article  CAS  Google Scholar 

  • Paszczynski A, Pasti-Grigs MB, Goszszynski S, Crawford RL, Crawford DL (1992) Appl Environ Microbiol 58:3598–3604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson Education Inc; Publishing as Pearson Benjamin Cummings (2008) p 52

    Google Scholar 

  • Petrides PE, Nauseef WM (2000) The peroxidase multigene family of enzymes, biochemical basis and clinical applications. Springer, Berlin

    Book  Google Scholar 

  • Phugare SS, Kalyani DC, Patiol AV, Jadhav JP (2011) Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies. J Hazard Mater 186:713–723

    Article  CAS  Google Scholar 

  • Pilanee V, Waraporn A, Oncheera P, Jirawate C (2010) Production of Ligninolytic enzymes by white-rot fungus Datronia sp. KAPI0039 and their application for reactive dye removal. Int J Chem Eng 2010:1–6. https://doi.org/10.1155/2010/162504

    Article  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  Google Scholar 

  • Prasad R (2017) Mycoremediation and Environmental Sustainability. Volume 1. Springer International Publishing (ISBN 978-3-319-68957-9) https://link.springer.com/book/10.1007/978-3-319-68957-9

    Google Scholar 

  • Prasad R (2018) Mycoremediation and Environmental Sustainability, Volume 2. Springer International Publishing (ISBN 978-3-319-77386-5) https://www.springer.com/us/book/9783319773858

    Google Scholar 

  • Puvaneswari N, Muthukrishnan J, Gunasekaran P (2006) Toxicity assessment and microbial degradation of Azo dye. Indian J Exp Biol 44:618–626

    CAS  PubMed  Google Scholar 

  • Rafi F, Fraeankalin W, Cerniglia CE (1990) Azo reductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl Environ Microbiol 56:2146–2151

    Google Scholar 

  • Revankar M, Lele SS (2007) Synthetic dye decolorization by white rot fungus, Ganoderma sp. WR-1. Bioresour Technol 98:775–780

    Article  CAS  Google Scholar 

  • Robinson CC, Mandleco B, Olsen SF, Hart CH (2001) The parenting styles and dimension questionnaire. In: Perlmutter BF, Touliatos J, Holden GW (eds) Handbook of family measurement techniques, vol 3. Sage, Thousand Oaks, pp 319–321

    Google Scholar 

  • Rocha AA (1992) Algae as biological indicators of water pollution. In: Cordeiro-Marino M, MTP A, Santanna CL (eds) Algae and environment: a general approach. Sociedade Brasileira de Ficologia, CETESB, Sao Paulo, pp 34–55

    Google Scholar 

  • Saikia N, Gopal M (2004) Degradation of β-Cyfluthrin by fungi. J Food Chem 52:1220–1223

    Article  CAS  Google Scholar 

  • Saini RK, Banerjee UC (1997) Decolorization of Triphenylmethane dyes and textile effluents by Kurthrina sp. Enzym Microb Technol 24:433–437

    Article  Google Scholar 

  • Senthil SK, Perumalsamy M, Janardhana Prabhu H (2011) Decolourization potential of white-rot fungus Phanerochaete chrysosporium on synthetic dye bath effluent containing Amido black 10B. J Saudi Chem Soc. https://doi.org/10.1016/j.jscs.2011.10.010

  • Sibel TA, Ozcan A, Tamer A, Özcan A, Pat Z (2009) Biosorption of a reactive textile dye from aqueous solutions utilizing an agro-waste. Desalination 249:757–761

    Article  Google Scholar 

  • Singh S, Melo JS, Eapen Susan SF, D’Souza SF (2006) Phenol removal using Brassica juncea hairy roots: role of inherent peroxidase and H2O2. J Biochem Technol 123:43–49

    CAS  Google Scholar 

  • Slokar YM, Marechal AM (1997) Methods of decoloration of textile wastewaters. Dyes Pigments 37:335–356

    Article  Google Scholar 

  • Spadaro T, Lome I, Renganathan V (1994) Hydroxyl radical mediated degradation of Azo dyes: evidence for benzene generation. Environ Sci Technol 28:1389–1393

    Article  CAS  Google Scholar 

  • Srinivasan D, Nathan S, Suresh T, Lakshmanaperumalsamy P (2001) Antimicrobial activity of certain Indian medicinal plants used in folkloric medicine. J Ethnopharmacol 74:217–220. https://doi.org/10.1016/S0378-8741(00)00345-7

  • Tamer A, Fatih SS, Sibel TA (2016) The feasibility of Thamnidium elegans cells for color removal from real waste water. Pro Safe Environ Pro 105:316–325

    Google Scholar 

  • Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS, Wijesundera R (2014) Fungal biogeography. Global diversity and geography of soil fungi. Science 346:1256688. https://doi.org/10.1126/science.1256688

    Article  CAS  PubMed  Google Scholar 

  • Teli MT, Paul R, Landage SM, Aich A (2001) Eco friendly processing of sulphur and vat dye an overview. Indian J Fib Text Res 26:101–107

    CAS  Google Scholar 

  • Thummar V, Ramani V (2014) Microbial decolorization and degradation of textile dye. LAP Lambert Academic Publishing, Los Angeles, p 56

    Google Scholar 

  • Tuomela M, Hatakka A (2011) Oxidative fungal enzymes for bioremediation. Comput Biol:183–196. https://doi.org/10.1016/b978-0-08-088504-9.00370-6

  • Van der Zee FP, Field JA, Lettinga G (2002) Azo dye decolourisation by anaerobic granular sludge. Chemosphere 44:1169–1176

    Google Scholar 

  • Wesenberg D, Buchon F, Ahathos SN (2002) Degradation of dye containing textile effluent by the agaric white rot fungus Clitocybula dusenii. Biotechnol Lett 24:989–993

    Article  CAS  Google Scholar 

  • Winquist A, Steenland K (2014) Perfluorooctanoic acid exposure and thyroid disease in community and worker cohorts. Epidemiology 25:255–264

    Article  Google Scholar 

  • Yang XQ, Xiao Xia Zhao A, Cheng Yun Liu B, Yuan Zheng A, Shi Jun Qian C (2009) Decolorization of azo, triphenylmethane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laccase. Process Biochem 44:1185–1189

    Google Scholar 

  • Zeroual Y, Kim BS, Kim CS, Blaghen M, Lee KM (2006) A comparative study on biosorption characteristics of certain fungi for bromophenol blue dye. Appl Biol Biotechnol 134:51–60

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Rajeev Kumar gratefully acknowledges the financial support for this work from the DST-SERB “SB/EMEQ-042-2014” as well as U.G.C (F. No. 194-2/2016 New Delhi, India). I.B. Prasher is thankful to U.G.C (SAP, DRS-III) in the Department of Botany for infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R., Dhiman, N., Negi, S., Prasher, I.B., Prakash, C. (2018). Role of Fungi in Dye Removal. In: Kumar, V., Kumar, M., Prasad, R. (eds) Phytobiont and Ecosystem Restitution. Springer, Singapore. https://doi.org/10.1007/978-981-13-1187-1_20

Download citation

Publish with us

Policies and ethics