Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 322 Accesses

Abstract

While in chapter 3 the effect of lipid composition on the function of bacteriorhodopsin was demonstrated, it is clear that the use of synthetic lipid in the constitution of nanodisc deviates from the native environment of membrane protein. In this chapter, an efficient method of direct extraction was presented. The method can extract bacteriorhodopsin directly from the native purple membrane and incorporate into nanodisc without the addition of synthetic lipid or extra lipid extracts. The transfer efficiency was found to be up to 38% higher, and was found that in the presence of high salt environment to maintain trimeric conformation that is native to the protein. The native membrane nanodisc was examined using high resolution Zernike phase TEM without staining. The lipid composition of the native membrane nanodisc was conducted using LC-ESI-MS and 31P NMR, which showed that the majority of essential phospholipid was successfully transferred to the nanodisc from native purple membrane. Finally, the preservation of protein function was investigated using transient absorption spectroscopy, and was found to be photocycle active suggesting the function of bacteriorhodopsin was maintained on the native membrane nanodisc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cherry RJ, Müller U, Henderson R, Heyn MP (1978) Temperature-dependent aggregation of bacteriorhodopsin in dipalmitoyl- and dimyristoylphosphatidylcholine vesicles. J Mol Biol 121:283–298. https://doi.org/10.1016/S0022-2836(78)80010-2

    Article  CAS  PubMed  Google Scholar 

  2. Heyn MP, Cherry RJ, Dencher NA (1981) Lipid-protein interactions in bacteriorhodopsin-dimyristoylphosphatidylcholine vesicles. Biochemistry (Mosc) 20:840–849. https://doi.org/10.1021/bi00507a029

    Article  CAS  Google Scholar 

  3. Gulik-Krzywicki T, Seigneuret M, Rigaud JL (1987) Monomer-oligomer equilibrium of bacteriorhodopsin in reconstituted proteoliposomes: a freeze-fracture electron microscope study. J Biol Chem 262:15580–15588

    CAS  PubMed  Google Scholar 

  4. Grzesiek S, Dencher NA (1988) Monomeric and aggregated bacteriorhodopsin: single-turnover proton transport stoichiometry and photochemistry. Proc Natl Acad Sci U A 85:9509–9513

    Article  CAS  Google Scholar 

  5. Bayburt TH, Grinkova YV, Sligar SG (2006) Assembly of single bacteriorhodopsin trimers in bilayer nanodiscs. Arch Biochem Biophys 450:215–222. https://doi.org/10.1016/j.abb.2006.03.013

    Article  CAS  PubMed  Google Scholar 

  6. Dong YQ, Ramos RG, Li D, Barrett SE (2008) Controlling coherence using the internal structure of hard pi pulses. Phys Rev Lett 100:4. https://doi.org/10.1103/PhysRevLett.100.247601

    Article  CAS  Google Scholar 

  7. Joshi MK, Dracheva S, Mukhopadhyay AK et al (1998) Importance of specific native lipids in controlling the photocycle of bacteriorhodopsin. Biochemistry (Mosc) 37:14463–14470. https://doi.org/10.1021/bi980965j

    Article  CAS  Google Scholar 

  8. Sternberg B, L’Hostis C, Whiteway CA, Watts A (1992) The essential role of specific Halobacterium halobium polar lipids in 2D-array formation of bacteriorhodopsin. Biochim Biophys Acta BBA—Biomembr 1108:21–30. https://doi.org/10.1016/0005-2736(92)90110-8

    Article  CAS  Google Scholar 

  9. Orwick-Rydmark M, Lovett JE, Graziadei A et al (2012) Detergent-free incorporation of a seven-transmembrane receptor protein into nanosized bilayer lipodisq particles for functional and biophysical studies. Nano Lett 12:4687–4692. https://doi.org/10.1021/nl3020395

    Article  CAS  PubMed  Google Scholar 

  10. Nasr ML, Baptista D, Strauss M et al (2017) Covalently circularized nanodiscs for studying membrane proteins and viral entry. Nat Methods 14:49–52. https://doi.org/10.1038/nmeth.4079

    Article  CAS  PubMed  Google Scholar 

  11. Yusuf Y, Massiot J, Chang Y-T et al (2018) Optimization of the production of covalently circularized nanodiscs and their characterization in physiological conditions. Langmuir 34:3525–3532. https://doi.org/10.1021/acs.langmuir.8b00025

    Article  CAS  PubMed  Google Scholar 

  12. Baudry J, Tajkhorshid E, Molnar F et al (2001) Molecular dynamics study of bacteriorhodopsin and the purple membrane. J Phys Chem B 105:905–918. https://doi.org/10.1021/jp000898e

    Article  CAS  Google Scholar 

  13. Hagn F, Etzkorn M, Raschle T, Wagner G (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135:1919–1925. https://doi.org/10.1021/ja310901f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Denisov IG, Grinkova YV, Lazarides AA, Sligar SG (2004) Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J Am Chem Soc 126:3477–3487. https://doi.org/10.1021/ja0393574

    Article  CAS  PubMed  Google Scholar 

  15. Bayburt TH, Sligar SG (2010) Membrane protein assembly into Nanodiscs. FEBS Lett 584:1721–1727. https://doi.org/10.1016/j.febslet.2009.10.024

    Article  CAS  PubMed  Google Scholar 

  16. Pescitelli G, Woody RW (2012) The exciton origin of the visible circular dichroism spectrum of bacteriorhodopsin. J Phys Chem B 116:6751–6763. https://doi.org/10.1021/jp212166k

    Article  CAS  PubMed  Google Scholar 

  17. Dai W, Fu C, Raytcheva D et al (2013) Visualizing virus assembly intermediates inside marine cyanobacteria. Nature 502:707–710. https://doi.org/10.1038/nature12604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuo P-C, Chen I-H, Chen C-T et al (2013) On-chip thin film zernike phase plate for in-focus transmission electron microscopy imaging of organic materials. ACS Nano 7:465–470. https://doi.org/10.1021/nn304511p

    Article  CAS  PubMed  Google Scholar 

  19. Renner C (2005) Lipid composition of integral purple membrane by 1H and 31P NMR. J Lipid Res 46:1755–1764. https://doi.org/10.1194/jlr.M500138-JLR200

    Article  CAS  PubMed  Google Scholar 

  20. Corcelli A, Lattanzio VMT, Mascolo G et al (2002) Lipid-protein stoichiometries in a crystalline biological membrane: NMR quantitative analysis of the lipid extract of the purple membrane. J Lipid Res 43:132–140

    CAS  PubMed  Google Scholar 

  21. Cui J, Kawatake S, Umegawa Y et al (2015) Stereoselective synthesis of the head group of archaeal phospholipid PGP-Me to investigate bacteriorhodopsin–lipid interactions. Org Biomol Chem 13:10279–10284. https://doi.org/10.1039/C5OB01252J

    Article  CAS  PubMed  Google Scholar 

  22. Chizhov I, Schmies G, Seidel R et al (1998) The photophobic receptor from Natronobacterium pharaonis: temperature and pH dependencies of the photocycle of sensory rhodopsin II. Biophys J 75:999–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chu L-K, Yen C-W, El-Sayed MA (2010) Bacteriorhodopsin-based photo-electrochemical cell. Biosens Bioelectron 26:620–626. https://doi.org/10.1016/j.bios.2010.07.013

    Article  CAS  PubMed  Google Scholar 

  24. Yeh V, Lee T-Y, Chen C-W et al (2018) Highly efficient transfer of 7TM membrane protein from native membrane to covalently circularized nanodisc. Scientific Reports 8(1)

    Google Scholar 

Download references

Acknowledgements

The Zernike phase TEM image was taken by Pai-Chia Kuo from the Institute of Physics of Academia Sinica, Taipei, Taiwan. Dr. Shing-Jong Huang from the Instrumentation Center of National Taiwan University, Taipei, Taiwan, performed the 31P NMR experiment. LC-ESI-MS experiment was operated by Dr. Chien-Hung Chen of Core Facilities in Genomic Research Centre, Academia Sinica, Taipei, Taiwan. Transient absorption spectroscopy was performed at National Tsing Hua University, Hsinchu, Taiwan, with the help of Tsung-Yen Lee.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yeh, V. (2019). Native Membrane Nanodisc. In: Study of Bacteriorhodopsin in a Controlled Lipid Environment. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-1238-0_5

Download citation

Publish with us

Policies and ethics