Skip to main content

High Resolution AFM and Its Applications

  • Chapter
  • First Online:
Atomic Force Microscopy in Molecular and Cell Biology

Abstract

Imaging fine structures of molecules and cells under controlled conditions, and early detection of subtle changes in material properties are very important for understanding the mechanism of many biological processes. In the past decades, scientists made extensive efforts in exploring and developing new imaging technologies to improve the resolution and sensitivity of detection. AFM is not an exception, improving the resolution of measurements is a long-lasting effort for both users and instrument makers. It is even more challenging for soft materials, such as biological molecules, cells and biomaterials, as the force control in soft material measurement is more critical and difficult. In this chapter, we will first review the applications of high resolution AFM, discuss the challenges for high resolution in different aspects and followed by solutions to achieve high resolution for different applications, including AFM system optimization and sample-probe interaction optimization by probe design and control algorithm. A series of examples will be used as case studies to illustrate how to achieve high resolution in AFM experiments. At the end of this chapter, we will provide our prospective view on future developments in AFM technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gan Y. Atomic and subnanometer resolution in ambient conditions by atomic force microscopy. Surf Sci Rep. 2009;64(3):99–121.

    Article  CAS  Google Scholar 

  2. Dufrene YF, Martinez-Martin D, Medalsy I, Alsteens D, Muller DJ. Multiparametric imaging of biological systems by force-distance curve-based AFM. Nat Methods. 2013;10(9):847–54.

    Article  CAS  PubMed  Google Scholar 

  3. Raigoza AF, Dugger JW, Webb LJ. Review: recent advances and current challenges in scanning probe microscopy of biomolecular surfaces and interfaces. ACS Appl Mater Interfaces. 2013;5(19):9249–61.

    Article  CAS  PubMed  Google Scholar 

  4. Alsteens D, Muller DJ, Dufrene YF. Multiparametric atomic force microscopy imaging of biomolecular and cellular systems. Acc Chem Res. 2017;50(4):924–31.

    Article  CAS  PubMed  Google Scholar 

  5. Dufrene YF, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, et al. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat Nanotechnol. 2017;12(4):295–307.

    Article  CAS  PubMed  Google Scholar 

  6. Giessibl FJ. Advances in atomic force microscopy. Rev Mod Phys. 2003;75(3):949–83.

    Article  CAS  Google Scholar 

  7. Garcia R, Perez R. Dynamic atomic force microscopy methods. Surf Sci Rep. 2002;47(6–8):197–301.

    Article  CAS  Google Scholar 

  8. Morita S, Fujisawa S, Sugawara Y. Spatially quantized friction with a lattice periodicity. Surf Sci Rep. 1996;23(1):1–41.

    Article  CAS  Google Scholar 

  9. Pfreundschuh M, Martinez-Martin D, Mulvihill E, Wegmann S, Muller DJ. Multiparametric high-resolution imaging of native proteins by force-distance curve-based AFM. Nat Protoc. 2014;9(5):1113–30.

    Article  CAS  PubMed  Google Scholar 

  10. Giessibl FJ. AFM's path to atomic resolution. Mater Today. 2005;8(5):32–41.

    Article  CAS  Google Scholar 

  11. Watson JD, Crick FHC. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature. 1953;171(4356):737–8.

    Article  CAS  PubMed  Google Scholar 

  12. Han H, Hurley LH. G-quadruplex DNA: a potential target for anti-cancer drug design. Trends Pharmacol Sci. 2000;21(4):136–42.

    Article  CAS  PubMed  Google Scholar 

  13. Lyubchenko YL, Shlyakhtenko LS, Ando T. Imaging of nucleic acids with atomic force microscopy. Methods. 2011;54(2):274–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hansma HG. Surface biology of DNA by atomic force microscopy. Annu Rev Phys Chem. 2001;52(1):71–92.

    Article  CAS  PubMed  Google Scholar 

  15. Mou J, Czajkowsky DM, Zhang YY, Shao ZF. High-resolution atomic-force microscopy of DNA: the pitch of the double helix. FEBS Letter. 1995;371(3):279–82.

    Article  CAS  Google Scholar 

  16. Ido S, Kimura K, Oyabu N, Kobayashi K, Tsukada M, Matsushige K, et al. Beyond the Helix pitch: direct visualization of native DNA in aqueous solution. ACS Nano. 2013;7(2):1817–22.

    Article  CAS  PubMed  Google Scholar 

  17. Maaloum M, Beker AF, Muller P. Secondary structure of double-stranded DNA under stretching: elucidation of the stretched form. Phys Rev E Stat Nonlinear Soft Matter Phys. 2011;83(3 Pt 1):031903.

    Article  CAS  Google Scholar 

  18. Leung C, Bestembayeva A, Thorogate R, Stinson J, Pyne A, Marcovich C, et al. Atomic force microscopy with nanoscale cantilevers resolves different structural conformations of the DNA double helix. Nano Lett. 2012;12(7):3846–50.

    Article  CAS  PubMed  Google Scholar 

  19. Pyne A, Thompson R, Leung C, Roy D, Hoogenboom BW. Single-molecule reconstruction of oligonucleotide secondary structure by atomic force microscopy. Small. 2014;10(16):3257–61.

    Article  CAS  PubMed  Google Scholar 

  20. Klejevskaja B, Pyne ALB, Reynolds M, Shivalingam A, Thorogate R, Hoogenboom BW, et al. Studies of G-quadruplexes formed within self-assembled DNA mini-circles. Chem Commun. 2016;52(84):12454–7.

    Article  CAS  Google Scholar 

  21. Zhang H, Chao J, Pan D, Liu H, Qiang Y, Liu K, et al. DNA origami-based shape IDs for single-molecule nanomechanical genotyping. Nat Commun. 2017;8:14738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gopinath A, Miyazono E, Faraon A, Rothemund PWK. Engineering and mapping nanocavity emission via precision placement of DNA origami. Nature. 2016;535(7612):401–5.

    Article  CAS  PubMed  Google Scholar 

  23. Han DR, Pal S, Nangreave J, Deng ZT, Liu Y, Yan H. DNA origami with complex curvatures in three-dimensional space. Science. 2011;332(6027):342–6.

    Article  CAS  PubMed  Google Scholar 

  24. Jiang Q, Song C, Nangreave J, Liu X, Lin L, Qiu D, et al. DNA origami as a carrier for circumvention of drug resistance. J Am Chem Soc. 2012;134(32):13396–403.

    Article  CAS  PubMed  Google Scholar 

  25. Lee AJ, Szymonik M, Hobbs JK, Wälti C. Tuning the translational freedom of DNA for high speed AFM. Nano Res. 2015;8(6):1811–21.

    Article  CAS  Google Scholar 

  26. Herrero-Galan E, Fuentes-Perez ME, Carrasco C, Valpuesta JM, Carrascosa JL, Moreno-Herrero F, et al. Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level. J Am Chem Soc. 2013;135(1):122–31.

    Article  CAS  PubMed  Google Scholar 

  27. Ares P, Fuentes-Perez ME, Herrero-Galan E, Valpuesta JM, Gil A, Gomez-Herrero J, et al. High resolution atomic force microscopy of double-stranded RNA. Nanoscale. 2016;8(23):11818–26.

    Article  CAS  PubMed  Google Scholar 

  28. Mulvihill E, van Pee K, Mari SA, Muller DJ, Yildiz O. Directly observing the lipid-dependent self-assembly and pore-forming mechanism of the Cytolytic toxin Listeriolysin O. Nano Lett. 2015;15(10):6965–73.

    Article  PubMed  CAS  Google Scholar 

  29. Sumino A, Yamamoto D, Iwamoto M, Dewa T, Oiki S. Gating-associated clustering-dispersion dynamics of the KcsA potassium channel in a lipid membrane. J Phys Chem Lett. 2014;5(3):578–84.

    Article  CAS  PubMed  Google Scholar 

  30. Milne JLS, Borgnia MJ, Bartesaghi A, Tran EEH, Earl LA, Schauder DM, et al. Cryo-electron microscopy: a primer for the non-microscopist. FEBS J. 2013;280(1):28–45.

    Article  CAS  PubMed  Google Scholar 

  31. Pittenger B, Erina N, Su C. Quantitative mechanical property mapping at the nanoscale with PeakForce QNM. Bruker Application Note #128. 2012

    Google Scholar 

  32. Medalsy I, Hensen U, Muller DJ. Imaging and quantifying chemical and physical properties of native proteins at molecular resolution by force–volume AFM. Angew Chem Int Ed. 2011;50(50):12103–8.

    Article  CAS  Google Scholar 

  33. Rico F, Su C, Scheuring S. Mechanical mapping of single membrane proteins at submolecular resolution. Nano Lett. 2011;11(9):3983–6.

    Article  CAS  PubMed  Google Scholar 

  34. Pfreundschuh M, Alsteens D, Hilbert M, Steinmetz MO, Muller DJ. Localizing chemical groups while imaging single native proteins by high-resolution atomic force microscopy. Nano Lett. 2014;14(5):2957–64.

    Article  CAS  PubMed  Google Scholar 

  35. Amo CA, Garcia R. Fundamental high-speed limits in single-molecule, single-cell, and nanoscale force spectroscopies. ACS Nano. 2016;10(7):7117–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Adamcik J, Lara C, Usov I, Jeong JS, Ruggeri FS, Dietler G, et al. Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method. Nanoscale. 2012;4(15):4426–9.

    Article  CAS  PubMed  Google Scholar 

  37. Sweers K, van der Werf K, Bennink M, Subramaniam V. Nanomechanical properties of α-synuclein amyloid fibrils: a comparative study by nanoindentation, harmonic force microscopy, and Peakforce QNM. Nanoscale Res Lett. 2011;6(1):270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Dover RS, Bitler A, Shimoni E, Trieu-Cuot P, Shai Y. Multiparametric AFM reveals turgor-responsive net-like peptidoglycan architecture in live streptococci. Nat Commun. 2015;6:7193.

    Article  PubMed  Google Scholar 

  39. Schillers H, Medalsy I, Hu S, Slade AL, Shaw JE. PeakForce tapping resolves individual microvilli on living cells. J Mol Recognit. 2016;29(2):95–101.

    Article  CAS  PubMed  Google Scholar 

  40. Berquand A. Quantitative imaging living biological samples PeakForce QNM. Bruker Application Note #135. 2011.

    Google Scholar 

  41. Usukura E, Narita A, Yagi A, Ito S, Usukura J. An Unroofing method to observe the cytoskeleton directly at molecular resolution using atomic force microscopy. Sci Rep. 2016;6:27472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kumar S, Cartron ML, Mullin N, Qian P, Leggett GJ, Hunter CN, et al. Direct imaging of protein organization in an intact bacterial organelle using high-resolution atomic force microscopy. ACS Nano. 2017;11(1):126–33.

    Article  CAS  PubMed  Google Scholar 

  43. Alsteens D, Dupres V, Yunus S, Latge JP, Heinisch JJ, Dufrene YF. High-resolution imaging of chemical and biological sites on living cells using peak force tapping atomic force microscopy. Langmuir. 2012;28(49):16738–44.

    Article  CAS  PubMed  Google Scholar 

  44. Li A, Lim TS, Shi H, Yin J, Tan SJ, Li Z, et al. Molecular mechanistic insights into the endothelial receptor mediated Cytoadherence of Plasmodium falciparum-infected erythrocytes. PLoS One. 2011;6(3):e16929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alsteens D, Newton R, Schubert R, Martinez-Martin D, Delguste M, Roska B, et al. Nanomechanical mapping of first binding steps of a virus to animal cells. Nat Nanotechnol. 2017;12(2):177–83.

    Article  CAS  PubMed  Google Scholar 

  46. Kenneth RC. Image digitization. In: Microscope Image Processing; 2008. Chap. 3.

    Google Scholar 

  47. Fukuma T, Kimura M, Kobayashi K, Matsushige K, Yamada H. Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy. Rev Sci Instrum. 2005;76(5):053704.

    Article  CAS  Google Scholar 

  48. Fukuma T, Kobayashi K, Matsushige K, Yamada H. True molecular resolution in liquid by frequency-modulation atomic force microscopy. Appl Phys Lett. 2005;86(19):193108.

    Article  CAS  Google Scholar 

  49. Fukuma T, Kobayashi K, Matsushige K, Yamada H. True atomic resolution in liquid by frequency-modulation atomic force microscopy. Appl Phys Lett. 2005;87(3)

    Article  CAS  Google Scholar 

  50. Fukuma T. Wideband low-noise optical beam deflection sensor with photothermal excitation for liquid-environment atomic force microscopy. Rev Sci Instrum. 2009;80(2):023707.

    Article  PubMed  CAS  Google Scholar 

  51. Fukuma T, Kobayashi K, Matsushige K, Yamada H. True molecular resolution in liquid by frequency-modulation atomic force microscopy. Appl Phys Lett. 2005;86(19)

    Article  CAS  Google Scholar 

  52. Ando T, Uchihashi T, Fukuma T. High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Prog Surf Sci. 2008;83(7–9):337–437.

    Article  CAS  Google Scholar 

  53. Bustamante C, Keller D. Scanning force microscopy in biology. Phys Today. 1995;48(12):32–8.

    Article  Google Scholar 

  54. Garcia R. Amplitude modulation atomic force microscope: Chap. 8. 2010

    Google Scholar 

  55. Shannon CE. Communication in the presence of noise. Proc Insitute Radio Eng. 1949;31(1):10–21.

    Google Scholar 

  56. Ohnesorge F, Binnig G. True atomic-resolution by atomic force microscopy through repulsive and attractive forces. Science. 1993;260(5113):1451–6.

    Article  CAS  PubMed  Google Scholar 

  57. Giessibl FJ. Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys Rev B. 1997;56(24):16010–5.

    Article  CAS  Google Scholar 

  58. Butt HJ, Cappella B, Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep. 2005;59(1–6):1–152.

    Article  CAS  Google Scholar 

  59. Weeks BL, Vaughn MW, DeYoreo JJ. Direct imaging of meniscus formation in atomic force microscopy using environmental scanning electron microscopy. Langmuir. 2005;21(18):8096–8.

    Article  CAS  PubMed  Google Scholar 

  60. Muller DJ, Schabert FA, Buldt G, Engel A. Imaging purple membranes in aqueous-solutions at subnanometer resolution by atomic-force microscopy. Biophys J. 1995;68(5):1681–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Scheuring S, Levy D, Rigaud JL. Watching the components of photosynthetic bacterial membranes and their in situ organisation by atomic force microscopy. BBA-Biomembr. 2005;1712(2):109–27.

    Article  CAS  Google Scholar 

  62. Gross L, Mohn F, Liljeroth P, Repp J, Giessibl FJ, Meyer G. Measuring the charge state of an Adatom with noncontact atomic force microscopy. Science. 2009;324(5933):1428–31.

    Article  CAS  PubMed  Google Scholar 

  63. Welker J, Giessibl FJ. Revealing the angular symmetry of chemical bonds by atomic force microscopy. Science. 2012;336(6080):444–9.

    Article  CAS  PubMed  Google Scholar 

  64. Jarvis SP, Yamada H, Yamamoto SL, Tokumoto H, Pethica JB. Direct mechanical measurement of interatomic potentials. Nature. 1996;384(6606):247–9.

    Article  CAS  Google Scholar 

  65. Jarvis MR, Perez R, Payne MC. Can atomic force microscopy achieve atomic resolution in contact mode? Phys Rev Lett. 2001;86(7):1287–90.

    Article  CAS  PubMed  Google Scholar 

  66. Albrecht TR, Quate CF. Atomic resolution imaging of a nonconductor by atomic force microscopy. J Appl Phys. 1987;62(7):2599–602.

    Article  CAS  Google Scholar 

  67. Binnig G, Gerber C, Stoll E, Albrecht TR, Quate CF. Atomic resolution with atomic force microscope. Europhys Lett. 1987;3(12):1281–6.

    Article  CAS  Google Scholar 

  68. Marti O, Drake B, Gould S, Hansma PK. Atomic resolution atomic force microscopy of graphite and the “native oxide” on silicon. J Vac Sci Technol A. 1988;6(2):287–90.

    Article  CAS  Google Scholar 

  69. Czajkowsky DM, Hotze EM, Shao ZF, Tweten RK. Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane. EMBO J. 2004;23(16):3206–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hu S, Raman A. Analytical formulas and scaling laws for peak interaction forces in dynamic atomic force microscopy. Appl Phys Lett. 2007;91(12):123106.

    Article  CAS  Google Scholar 

  71. Su CM, Huang L, Kjoller K, Babcock K. Studies of tip wear processes in tapping mode (TM) atomic force microscopy. Ultramicroscopy. 2003;97(1–4):135–44.

    Article  CAS  PubMed  Google Scholar 

  72. San Paulo A, Garcia R. Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy. Phys Rev B. 2001;64(19):193411–4.

    Article  CAS  Google Scholar 

  73. Anczykowski B, Kruger D, Babcock KL, Fuchs H. Basic properties of dynamic force spectroscopy with the scanning force microscope in experiment and simulation. Ultramicroscopy. 1996;66(3–4):251–9.

    Article  CAS  Google Scholar 

  74. Anczykowski B, Kruger D, Fuchs H. Cantilever dynamics in quasinoncontact force microscopy: spectroscopic aspects. Phys Rev B. 1996;53(23):15485–8.

    Article  CAS  Google Scholar 

  75. Garcia R, San Paulo A. Dynamics of a vibrating tip near or in intermittent contact with a surface. Phys Rev B. 2000;61(20):13381–4.

    Article  Google Scholar 

  76. San Paulo A, Garcia R. High-resolution imaging of antibodies by tapping-mode atomic force microscopy: attractive and repulsive tip-sample interaction regimes. Biophys J. 2000;78(3):1599–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ohnesorge FM. Towards atomic resolution non-contact dynamic force microscopy in a liquid. Surf Interface Anal. 1999;27(5–6):379–85.

    Article  CAS  Google Scholar 

  78. Voitchovsky K, Kuna JJ, Contera SA, Tosatti E, Stellacci F. Direct mapping of the solid-liquid adhesion energy with subnanometre resolution. Nat Nanotechnol. 2010;5(6):401–5.

    Article  CAS  PubMed  Google Scholar 

  79. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K. Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature. 2003;421(6919):127–8.

    Article  CAS  PubMed  Google Scholar 

  80. Belikov S, Magonov S. True molecular-scale imaging in atomic force microscopy: experiment and modeling. Jpn J Appl Phys 1. 2006;45(3b):2158–65.

    Article  CAS  Google Scholar 

  81. Su C, Lombrozo PM. Method and apparatus of high speed property mapping. United States Patent (Patent No. US 7,658,097 B2). 2010.

    Google Scholar 

  82. Hu Y, Hu S, Su C. Method and apparatus of operating a scanning probe microscope. United States Patent Application Publication (Pub. No. US 2010/0122385 A1). 2010

    Google Scholar 

  83. Ando T, Uchihashi T, Kodera N. High-speed AFM and applications to biomolecular systems. Annu Rev Biophys. 2013;42:393–414.

    Article  CAS  PubMed  Google Scholar 

  84. Brown BP, Picco L, Miles MJ, Faul CF. Opportunities in high-speed atomic force microscopy. Small. 2013;9(19):3201–11.

    CAS  PubMed  Google Scholar 

  85. Ando T. High-speed AFM imaging. Curr Opin Struct Biol. 2014;28:63–8.

    Article  CAS  PubMed  Google Scholar 

  86. Payton OD, Picco L, Scott TB. High-speed atomic force microscopy for materials science. Int Mater Rev. 2016;61(8):473–94.

    Article  CAS  Google Scholar 

  87. Takahashi H, Miyagi A, Redondo-Morata L, Scheuring S. Temperature-controlled high-speed AFM: real-time observation of ripple phase transitions. Small. 2016;12(44):6106–13.

    Article  CAS  PubMed  Google Scholar 

  88. Yamashita H, Taoka A, Uchihashi T, Asano T, Ando T, Fukumori Y. Single-molecule imaging on living bacterial cell surface by high-speed AFM. J Mol Biol. 2012;422(2):300–9.

    Article  CAS  PubMed  Google Scholar 

  89. Sweers KKM, Segers-Nolten IMJ, Bennink ML, Subramaniam V. Structural model for α-synuclein fibrils derived from high resolution imaging and nanomechanical studies using atomic force microscopy. Soft Matter. 2012;8(27):7215.

    Article  CAS  Google Scholar 

  90. Alsteens D, Trabelsi H, Soumillion P, Dufrene YF. Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria. Nat Commun. 2013;4:2926.

    Article  PubMed  CAS  Google Scholar 

  91. Casdorff K, Keplinger T, Bellanger H, Michen B, Schon S, Burgert I. High-resolution adhesion mapping of the odd-even effect on a layer-by-layer coated biomaterial by atomic-force-microscopy. ACS Appl Mater Interfaces. 2017;9(15):13793–800.

    Article  CAS  PubMed  Google Scholar 

  92. Cartagena A, Hernando-Perez M, Carrascosa JL, de Pablo PJ, Raman A. Mapping in vitro local material properties of intact and disrupted virions at high resolution using multi-harmonic atomic force microscopy. Nanoscale. 2013;5(11):4729–36.

    Article  CAS  PubMed  Google Scholar 

  93. Stroh C, Wang H, Bash R, Ashcroft B, Nelson J, Gruber H, et al. Single-molecule recognition imaging-microscopy. Proc Natl Acad Sci U S A. 2004;101(34):12503–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sahin O, Magonov S, Su C, Quate CF, Solgaard O. An atomic force microscope tip designed to measure time-varying nanomechanical forces. Nat Nanotechnol. 2007;2(8):507–14.

    Article  PubMed  Google Scholar 

  95. Chopinet L, Formosa C, Rols MP, Duval RE, Dague E. Imaging living cells surface and quantifying its properties at high resolution using AFM in QI (TM) mode. Micron. 2013;48:26–33.

    Article  CAS  PubMed  Google Scholar 

  96. Garcia R, Herruzo ET. The emergence of multifrequency force microscopy. Nat Nanotechnol. 2012;7(4):217–26.

    Article  CAS  PubMed  Google Scholar 

  97. Bampoulis P, Sotthewes K, Siekman MH, Zandvliet HJ, Poelsema B. Graphene visualizes the ion distribution on air-cleaved Mica. Sci Rep. 2017;7:43451.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Xie H, Zhang H, Hussain D, Meng X, Song J, Sun L. Multiparametric Kelvin probe force microscopy for the simultaneous mapping of surface potential and Nanomechanical properties. Langmuir. 2017;33(11):2725–33.

    Article  CAS  PubMed  Google Scholar 

  99. Sugawara Y, Kou L, Ma Z, Kamijo T, Naitoh Y, Jun Li Y. High potential sensitivity in heterodyne amplitude-modulation Kelvin probe force microscopy. Appl Phys Lett. 2012;100(22):223104.

    Article  CAS  Google Scholar 

  100. Cadena MJ, Misiego R, Smith KC, Avila A, Pipes B, Reifenberger R, et al. Sub-surface imaging of carbon nanotube-polymer composites using dynamic AFM methods. Nanotechnology. 2013;24(13):135706.

    Article  PubMed  CAS  Google Scholar 

  101. Kou L, Ma Z, Li YJ, Naitoh Y, Komiyama M, Sugawara Y. Surface potential imaging with atomic resolution by frequency-modulation Kelvin probe force microscopy without bias voltage feedback. Nanotechnology. 2015;26(19):195701.

    Article  PubMed  CAS  Google Scholar 

  102. Cadena MJ, Chen Y, Reifenberger RG, Raman A. Sub-surface AFM imaging using tip generated stress and electric fields. Appl Phys Lett. 2017;110(12):123108.

    Article  CAS  Google Scholar 

  103. Wen HF, Li YJ, Arima E, Naitoh Y, Sugawara Y, Xu R, et al. Investigation of tunneling current and local contact potential difference on the TiO2(110) surface by AFM/KPFM at 78 K. Nanotechnology. 2017;28(10):105704.

    Article  PubMed  CAS  Google Scholar 

  104. Enriquez-Flores CI, Gervacio-Arciniega JJ, Cruz-Valeriano E, de Urquijo-Ventura P, Gutierrez-Salazar BJ, Espinoza-Beltran FJ. Fast frequency sweeping in resonance-tracking SPM for high-resolution AFAM and PFM imaging. Nanotechnology. 2012;23(49):495705.

    Article  CAS  PubMed  Google Scholar 

  105. Li CZ, Minne S, Pittenger B, Mednick A .Simultaneous electrical mechanical property mapping with PeakForce TUNA. Bruker Application Note #132. 2011

    Google Scholar 

  106. Li CZ, Minne S, Hu Y, Ma J, He JL, Mittel H, et al. PeakForce KPFM. Bruker Application Note #140. 2017.

    Google Scholar 

  107. Huang Z, De Wolf P, Poddar R, Li C, Mark A, Nellist MR, et al. PeakForce scanning electrochemical microscopy with Nanoelectrode probes. Microsc Today. 2016;24(06):18–25.

    Article  Google Scholar 

  108. Hwang GT, Park H, Lee JH, Oh S, Park KI, Byun M, et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv Mater. 2014;26(28):4880–7.

    Article  CAS  PubMed  Google Scholar 

  109. Hansma PK, Drake B, Marti O, Gould SAC, Prater CB. The scanning ion-conductance microscope. Science. 1989;243(4891):641–3.

    Article  CAS  PubMed  Google Scholar 

  110. Bard AJ. Chemical imaging of surfaces with the scanning electrochemical microscope. Science. 1991;254(5028):68–74.

    Article  CAS  PubMed  Google Scholar 

  111. Polcari D, Dauphin-Ducharme P, Mauzeroll J. Scanning electrochemical microscopy: a comprehensive review of experimental parameters from 1989 to 2015. Chem Rev. 2016;116(22):13234–78.

    Article  CAS  PubMed  Google Scholar 

  112. Meckes B, Arce FT, Connelly LS, Lal R. Insulated conducting cantilevered nanotips and two-chamber recording system for high resolution ion sensing AFM. Sci Rep. 2014;4:4454.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Huang ZQ, DeWolf P, Li CZ, Poddar R, Yermolenko I, Mark A, et al.. PeakForce SECM. Bruker Application Note #147. 2017.

    Google Scholar 

  114. Nellist MR, Chen Y, Mark A, Godrich S, Stelling C, Jiang J, et al. Atomic force microscopy with nanoelectrode tips for high resolution electrochemical, nanoadhesion and nanoelectrical imaging. Nanotechnology. 2017;28(9):095711.

    Article  PubMed  CAS  Google Scholar 

  115. Fu W, Zhang W. Hybrid AFM for nanoscale physicochemical characterization: recent development and emerging applications. Small. 2017;13(11):1603525.

    Article  CAS  Google Scholar 

  116. Somnath S, Jesse S, Van Berkel GJ, Kalinin SV, Ovchinnikova OS. Improved spatial resolution for spot sampling in thermal desorption atomic force microscopy – mass spectrometry via rapid heating functions. Nanoscale. 2017;9(17):5708–17.

    Article  CAS  PubMed  Google Scholar 

  117. Gianoncelli A, Kourousias G, Cammisuli F, Cassese D, Rizzardi C, Radillo O, et al. Combined use of AFM and soft X-ray microscopy to reveal fibres’ internalization in mesothelial cells. Analyst. 2017;142(11):1982–92.

    Article  CAS  PubMed  Google Scholar 

  118. Costa L, Andriatis A, Brennich M, Teulon JM, Chen SW, Pellequer JL, et al. Combined small angle X-ray solution scattering with atomic force microscopy for characterizing radiation damage on biological macromolecules. BMC Struct Biol. 2016;16(1):18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanxin Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, H., Ye, M., Sun, W. (2018). High Resolution AFM and Its Applications. In: Cai, J. (eds) Atomic Force Microscopy in Molecular and Cell Biology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1510-7_10

Download citation

Publish with us

Policies and ethics