Skip to main content

Cerebral Malaria: Players in the Pathogenic Mechanism and Treatment Strategies

  • Chapter
  • First Online:
Infectious Diseases and Your Health
  • 630 Accesses

Abstract

Cerebral malaria (CM) is a major life-threatening disease caused by Plasmodium falciparum infection in humans. The complex pathogenic mechanisms underlying the fatal neurological complications of the disease are still not completely elucidated. The autopsy studies in fatal cases of human CM and advances in knowledge from various animal models have offered insight into the precise mechanism of the disease. The parasite sequestration in the brain microvascular endothelial cells and dysregulated host immune system together determine the pathophysiology of CM. Despite optimal treatment with antimalarials, 25% of the patients suffer from post-treatment neurological and cognitive deficits. In this review, we have discussed the components of the pathogenic mechanisms of CM and the current scenario of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armah H, Dodoo AK, Wiredu EK, Stiles JK, Adjei AA, Gyasi RK et al (2005a) High-level cerebellar expression of cytokines and adhesion molecules in fatal, paediatric, cerebral malaria. Ann Trop Med Parasitol 99:629–647

    Article  CAS  Google Scholar 

  • Armah H, Wired EK, Dodoo AK, Adjei AA, Tettey Y, Gyasi R (2005b) Cytokines and adhesion molecules expression in the brain in human cerebral malaria. Int J Environ Res Public Health 2:123–131

    Article  CAS  Google Scholar 

  • Baruch DI (1999) Adhesive receptors on malaria-parasitized red cells. Best Pract Res Clin Haematol 12:747–761

    Article  CAS  Google Scholar 

  • Boivin MJ, Bangirana P, Byarugaba J, Opoka RO, Idro R, Jurek AM et al (2007) Cognitive impairment after cerebral malaria in children: a prospective study. Pediatrics 119:e360–e366

    Article  Google Scholar 

  • Brown H, Turner G, Rogerson S, Tembo M, Mwenechanya J, Molyneux M et al (1999) Cytokine expression in the brain in human cerebral malaria. J Infect Dis 180(5):1742–1746

    Article  CAS  Google Scholar 

  • Casals-Pascual C, Idro R, Gicheru N, Gwer S, Kitsao B, Gitau E et al (2008) High levels of erythropoietin are associated with protection against neurological sequelae in African children with cerebral malaria. Proc Natl Acad Sci U S A 105(7):2634–2639

    Article  CAS  Google Scholar 

  • Charunwatthana P, Abul Faiz M, Ruangveerayut R et al (2009) N-acetylcysteine as adjunctive treatment in severe malaria: a randomized, double-blinded placebo-controlled clinical trial. Crit Care Med 37:516–522

    Article  CAS  Google Scholar 

  • Chattopadhyay R, Taneja T, Chakrabarti K, Pillai CR, Chitnis CE (2004) Molecular analysis of the cytoadherence phenotype of a Plasmodium falciparum field isolate that binds intercellular adhesion molecule-1. Mol Biochem Parasitol 133(2):255–265

    Article  CAS  Google Scholar 

  • Combes V, El-Assaad F, Faille D, Jambou R, Hunt NH, Grau GE (2010) Microvesiculation and cell interactions at the brain-endothelial interface in cerebral malaria pathogenesis. Prog Neurobiol 91:140–150

    Article  CAS  Google Scholar 

  • Crabb BS, Cooke BM, Reeder JC, Waller RF, Caruana SR, Davern KM et al (1997) Targeted gene disruption shows that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress. Cell 89:287–296

    Article  CAS  Google Scholar 

  • Craig A, Scherf A (2001) Molecules on the surface of the Plasmodium falciparum infected erythrocyte and their role in malaria pathogenesis and immune evasion. Mol Biochem Parasitol 115:129–143

    Article  CAS  Google Scholar 

  • Dalko E, Tchitchek N, Pays L, Herbert F, Cazenave PA, Ravindran B, Sharma S, Nataf S, Das B, Pied S (2016) Erythropoietin levels increase during cerebral malaria and correlate with heme, Interleukin-10 and tumor necrosis factor-alpha in India. PLoS One 11:e0158420

    Article  Google Scholar 

  • Das BK, Mishra S, Padhi PK, Manish R, Tripathy R, Sahoo PK et al (2003) Pentoxifylline adjunct improves prognosis of human cerebral malaria in adults. Trop Med Int Health 8:680–684

    Article  CAS  Google Scholar 

  • David PH, Hommel M, Miller LH, Udeinya IJ, Oligino LD (1983) Parasite sequestration in Plasmodium falciparum malaria: spleen and antibody modulation of cytoaderence of infected erythrocytes. Proc Natl Acad Sci U S A 80(16):5075–5079

    Article  CAS  Google Scholar 

  • Deininger MH, Kremsner PG, Meyermann R, Schluesener HJ (2000) Differential cellular accumulation of transforming growth factor-beta1, −beta2, and -beta3 in brains of patients who died with cerebral malaria. J Infect Dis 181(6):2111–2115

    Article  CAS  Google Scholar 

  • de Souza JB, Riley EM (2002) Cerebral malaria: the contribution of studies in animal models to our understanding of immunopathogenesis. Microbes Infect 4(3):291–300

    Google Scholar 

  • Dorovini-Zis K, Schmidt K, Huynh H, Fu W, Whitten RO, Milner D et al (2011) The neuropathology of fatal cerebral malaria in Malawian children. Am J Pathol 178:2146–2158

    Article  Google Scholar 

  • Emuchay CI, Usanga EA (1997) Increased platelet factor 3 activity in Plasmodium falciparum malaria. East Afr Med J 74:527–529

    CAS  PubMed  Google Scholar 

  • Gazzinelli RT, Denkers EY (2006) Protozoan encounters with toll-like receptor signalling pathways: implications for host parasitism. Nat Rev Immunol 6:895–906

    Article  CAS  Google Scholar 

  • Glushakova S, Busse BL, Garten M, Beck JR, Fairhurst RM, Goldberg DE, Zimmerberg J (2017) Exploitation of a newly-identified entry pathway into the malaria parasite-infected erythrocyte to inhibit parasite egress. Sci Rep 7:12250. https://doi.org/10.1038/s41598-017-12258-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordeuk V, Thuma P, Brittenham G, McLaren C, Parry D, Backenstose A et al (1992) Effect of iron chelation therapy on recovery from deep coma in children with cerebral malaria. N Engl J Med 327(21):1473–1477

    Article  CAS  Google Scholar 

  • Gordeuk VR, Loyevsky M (2002) Antimalarial effect of iron chelators. Adv Exp Med Biol 509:251–272

    Article  CAS  Google Scholar 

  • Griffiths MJ, Ndungu F, Baird KL, Muller DP, Marsh K, Newton CR (2001) Oxidative stress and erythrocyte damage in Kenyan children with severe Plasmodium falciparum malaria. Br J Haematol 113(2):486–491

    Article  CAS  Google Scholar 

  • Heddini A, Chen Q, Obiero J, Kai O, Fernandez V, Marsh K et al (2001) Binding of Plasmodium falciparum-infected erythrocytes to soluble platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31): frequent recognition by clinical isolates. Am J Trop Med Hyg 65:47–51

    Article  CAS  Google Scholar 

  • Ho M, White NJ (1999) Molecular mechanisms of cytoadherence in malaria. Am J Physiol 276:C1231–C1242

    Article  CAS  Google Scholar 

  • Howard RJ, Handunnetti SM, Hasler T, Gilladoga A, de Aguiar JC, Pasloske BL et al (1990) Surface molecules on Plasmodium falciparum-infected erythrocytes involved in adherence. Am J Trop Med Hyg 43:15–29

    Article  CAS  Google Scholar 

  • Hsieh F-L, Turner L, Bolla JR, Robinson CV, Lavstsen T, Higgins MK (2016) The structural basis for CD36 binding by the malaria parasite. Nat Commun 7:12837

    Google Scholar 

  • John CC, Kutamba E, Mugarura K, Opoka RO (2010) Adjunctive therapy for cerebral malaria and other severe forms of Plasmodium falciparum malaria. Expert Rev Anti-Infect Ther 8(9):997–1008

    Article  CAS  Google Scholar 

  • Lell B, Köhler C, Wamola B, Olola CH, Kivaya E, Kokwaro G, Wypij D, Mithwani S, Taylor TE, Kremsner PG, Newton CR (2010) Pentoxifylline as an adjunct therapy in children with cerebral malaria. Malar J 21:368–369

    Article  Google Scholar 

  • Looareesuwan S, Wilairatana P, Vannaphan S, Wanaratana V, Wenisch C, Aikawa M, Brittenham G, Graninger W, Wernsdorfer WH (1998) Pentoxifylline as an ancillary treatment for severe falciparum malaria in Thailand. Achieves Dis Child 58:348–353

    CAS  Google Scholar 

  • Looareesuwan S, Sjostrom L, Krudsood S, Wilairatana P, Porter RS, Hills F et al (1999) Polyclonal anti-tumor necrosis factor-alpha fab used as an ancillary treatment for severe malaria. Am J Trop Med Hyg 61(1):26–33

    Article  CAS  Google Scholar 

  • Loutan L, Plancherel C, Soulier-lauper M, Pascual M, Subilia L, Chevrolet JC, Unger PF, Grau GE (1992) Serum TNF in patients with severe malaria treated by exchange transfusion. Trop Med Parasitol 43:285–286

    CAS  PubMed  Google Scholar 

  • Maitland K, Pamba A, English M, Peshu N, Marsh K, Newton C et al (2005) Randomized trial of volume expansion with albumin or saline in children with severe malaria: preliminary evidence of albumin benefit. Clin Infect Dis 40:538–545

    Article  Google Scholar 

  • Maneerat Y, Pongponratn E, Viriyavejakul P, Punpoowong B, Looareesuwan S, Udomsangpetch R (1999) Cytokines associated with pathology in the brain tissue of fatal malaria. Southeast Asian J Trop Med Public Health 30(4):643–649

    Google Scholar 

  • Martins YC, Carvalho LJ, Daniel-Ribeiro CT (2009) Challenges in the determination of early predictors of cerebral malaria: lessons from the human disease and the experimental murine models. Neuroimmunomodulation 16(2):134–145

    Article  CAS  Google Scholar 

  • Miller LH, Ackerman HC, Su XZ, Wellems TE (2013) Malaria biology and disease pathogenesis: insights for new treatments. Nat Med 19:156–167

    Article  CAS  Google Scholar 

  • Mohanty D, Ghosh K, Pathare AV, Karnad D (2002) Deferiprone (L1) as an adjuvant therapy for Plasmodium falciparum malaria. Indian J Med Res 115:17–21

    Google Scholar 

  • Mohanty S, Mishra SK, Patnaik R, Dutt AK, Pradhan S, Das B, Patnaik J, Mohanty AK, Lee SJ, Dondorp AM (2011) Brain swelling and mannitol therapy in adult cerebral malaria: a randomized trial. Clin Infect Dis 53:349–355

    Article  CAS  Google Scholar 

  • Namutangula B, Ndeezi G, Byarugaba JS, Tumwine JK (2007) Mannitol as adjunct therapy for childhood cerebral malaria in Uganda: a randomized clinical trial. Malar J 24:138

    Article  Google Scholar 

  • Newbold C, Warn P, Black G, Berendt A, Craig A, Snow B et al (1997a) Receptor-specific adhesion and clinical disease in Plasmodium falciparum. Am J Trop Med Hyg 57(4):389–398

    Article  CAS  Google Scholar 

  • Newbold CI, Craig AG, Kyes S, Berendt AR, Snow RW, Peshu N et al (1997b) PfEMP1, polymorphism and pathogenesis. Ann Trop Med Parasitol 91(5):551–557

    Article  CAS  Google Scholar 

  • Ockenhouse CF, Tegoshi T, Maeno Y, Benjamin C, Ho M, Kan KE et al (1992) Human vascular endothelial cell adhesion receptors for Plasmodium falciparum-infected erythrocytes: roles for endothelial leukocyte adhesion molecule 1 and vascular cell adhesion molecule 1. J Exp Med 176:1183–1189

    Article  CAS  Google Scholar 

  • Pongponratn E, Turner GD, Day NP, Phu NH, Simpson JA, Stepniewska K et al (2003) An ultrastructural study of the brain in fatal Plasmodium falciparum malaria. Am J Trop Med Hyg 69:345–359

    Article  Google Scholar 

  • Ponsford MJ, Medana IM, Prapansilp P, Hien TT, Lee SJ, Dondorp AM et al (2012) Sequestration and microvascular congestion are associated with coma in human cerebral malaria. J Infect Dis 205:663–671

    Article  Google Scholar 

  • Pouvelle B, Matarazzo V, Jurzynski C, Nemeth J, Ramharter M, Rougon G, Gysin J (2007) Neural cell adhesion molecule, a new cytoadhesion receptor for Plasmodium falciparum-infected erythrocytes capable of aggregation. Infect Immun 75(7):3516–3522

    Article  CAS  Google Scholar 

  • Rampengan TH (1991) Cerebral malaria in children. Comparative study between heparin, dexamethasone and placebo. Paediatr Indones 31:59–66

    CAS  PubMed  Google Scholar 

  • Reyburn H, Mbatia R, Drakeley C, Bruce J, Carneiro I, Olomi R et al (2005) Association of transmission intensity and age with clinical manifestations and case fatality of severe Plasmodium falciparum malaria. J Am Med Assoc 293:1461–1470

    Article  CAS  Google Scholar 

  • Riddle MS, Jeffery LJ, Sanders JH, Blazes DL (2002) Exchange transfusion as an adjunct therapy in severe Plasmodium falciparum malaria: a meta-analysis. Clin Infect Dis 1:1192–1198

    Article  Google Scholar 

  • Rogerson SJ, Reeder JC, Al-Yaman F, Brown GV (1994) Sulfated glycoconjugates as disrupters of Plasmodium falciparum erythrocyte rosettes. Am J Trop Med Hyg 51:198–203

    Article  CAS  Google Scholar 

  • Sahu PK, Satpathi S, Behera PK, Mishra SK, Mohanty S, Wassmer SC (2015) Pathogenesis of cerebral malaria: new diagnostic tools, biomarkers, and therapeutic approaches. Front Cell Infect Microbiol 5:75

    Article  Google Scholar 

  • Scott CS, Van Zyl D, Ho E, Ruivo L, Mendelow B, Coetzer TL (2002) Thrombocytopenia in patients with malaria: automated analysis of optical platelet counts and platelet clumps with the cell Dyn CD4000 analyser. Clin Lab Haematol 24:295–302

    Article  CAS  Google Scholar 

  • Sein KK, Maeno Y, Thuc HV, Anh TK, Aikawa M (1993) Differential sequestration of parasitized erythrocytes in the cerebrum and cerebellum in human cerebral malaria. Am J Trop Med Hyg 48:504–511

    Article  CAS  Google Scholar 

  • Seydel KB, Milner DA Jr, Kamiza SB, Molyneux ME, Taylor TE (2006) The distribution and intensity of parasite sequestration in comatose Malawian children. J Infect Dis 194:208–205

    Article  Google Scholar 

  • Seydel KB, Kampondeni SD, Valim C, Potchen MJ, Milner DA, Muwalo FW et al (2015) Brain swelling and death in children with cerebral malaria. N Engl J Med 372:1126–1137

    Article  CAS  Google Scholar 

  • Springer AL, Smith LM, Mackay DQ, Nelson SO, Smith JD (2004) Functional interdependence of the DBLbeta domain and c2 region for binding of the Plasmodium falciparum variant antigen to ICAM-1. Mol Biochem Parasitol 137:55–64

    Article  CAS  Google Scholar 

  • Srivastava K, Field DJ, Aggrey A, Yamakuchi M, Morrell CN (2010) Platelet factor 4 regulation of monocyte KLF4 in experimental cerebral malaria. PLoS One 5:e10413. https://doi.org/10.1371/journal.pone.0010413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor TE, Molyneux ME, Wirima JJ, Borgstein A, Goldring JD, Hommel M (1992) Intravenous immunoglobulin in the treatment of paediatric cerebral malaria. Clin Exp Immunol 90(3):357–362

    Article  Google Scholar 

  • Thuma PE, Mabeza GF, Biemba G, Bhat GJ, McLaren CE, Moyo VM, Zulu S, Khumalo H, Mabeza P, M’Hango A, Parry D, Poltera AA, Brittenham GM, Gordeuk VR (1998) Effect of iron chelation therapy on mortality in Zambian children with cerebral malaria. Trans R Soc Trop Med Hygeine 92:214–218

    Article  CAS  Google Scholar 

  • Tongren JE, Yang C, Collins WE, Sullivan JS, Lal AA, Xiao L (2000) Expression of proinflammatory cytokines in four regions of the brain in macaque mulatta (rhesus) monkeys infected with Plasmodium coatneyi. Am J Trop Med Hyg 62(4):530–534

    Article  CAS  Google Scholar 

  • Tse MT, Chakrabarti K, Gray C, Chitnis CE, Craig A (2004) Divergent binding sites on intercellular adhesion molecule-1 (ICAM-1) for variant Plasmodium falciparum isolates. Mol Microbiol 51:1039–1049

    Article  CAS  Google Scholar 

  • Udomsangpetch R, Reinhardt PH, Schollaardt T, Elliott JF, Kubes P, Ho M (1997) Promiscuity of clinical Plasmodium falciparum isolates for multiple adhesion molecules under flow conditions. J Immunol 158(9):4358–4364

    Google Scholar 

  • Van Hensbroek MB, Palmer A, Onyiorah E, Schneider G, Jaffar S, Dolan G et al (1996) The effect of a monoclonal antibody to tumor necrosis factor on survival from childhood cerebral malaria. J Infect Dis 174:1091–1097

    Article  Google Scholar 

  • Warrell DA (1997) Cerebral malaria: clinical features, pathophysiology and treatment. Ann Trop Med Parasitol 91:875–884

    CAS  PubMed  Google Scholar 

  • Wassmer SC, Taylor TE, Rathod PK, Mishra SK, Mohanty S, Arevalo-Herrera M et al (2015) Investigating the pathogenesis of severe malaria: a multidisciplinary and cross-geographical approach. Am J Trop Med Hyg 93(3 Suppl):42–56

    Article  CAS  Google Scholar 

  • Watt G, Jongsakul K, Ruangvirayuth R (2002) A pilot study of N-acetylcysteine as adjunctive therapy for severe malaria. Q J Med 95:285–290

    Article  CAS  Google Scholar 

  • White NJ (1996) The treatment of malaria. N Engl J Med 335(11):800–806

    Article  CAS  Google Scholar 

  • WHO (2015) World Malaria Report, WHO Bulletin

    Google Scholar 

  • Yipp BG, Hickey MJ, Andonegui G, Murray AG, Looareesuwan S, Kubes P et al (2007) Differential roles of CD36, ICAM-1, and P-selectin in Plasmodium falciparum cytoadherence in vivo. Microcirculation 14:593–602

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dwivedi, H., Tripathi, R. (2018). Cerebral Malaria: Players in the Pathogenic Mechanism and Treatment Strategies. In: Singh, P. (eds) Infectious Diseases and Your Health. Springer, Singapore. https://doi.org/10.1007/978-981-13-1577-0_3

Download citation

Publish with us

Policies and ethics