Skip to main content

Applications: Aqueous Interfaces

  • Chapter
  • First Online:
Theory of Sum Frequency Generation Spectroscopy

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 97))

  • 1161 Accesses

Abstract

This chapter presents recent applications of the computational SFG analysis for aqueous interfaces. Aqueous interfaces are relevant to a variety of fields in chemistry and engineering, and have been extensively investigated by SFG spectroscopy. Nevertheless, their hydrogen-bonding network and complicated vibrational coupling hinder simple intuitive interpretation of the observed spectra. The aid of MD simulation to analyze the complicated SFG spectra is actually quite powerful. This chapter introduces the results of analysis for various aqueous interfaces led by the author’s group and others, including water, ice, electrolyte aqueous solutions, water-oil and water-membrane interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Early phase-sensitive SFG experiments reported a positive tail of Im[χ (2)] at around 3000 cm−1 region [40, 66, 105]. That feature is considered to be an artifact of phase calibration at present [67, 114].

  2. 2.

    Note that the present MD simulation employed the point polarizable model [27] instead of CRK. Therefore, the spectra and structure may not coincide with those of the CRK model in other parts.

  3. 3.

    One may wonder that the net dipole in the FSS cancel and thus no signal is generated. Even though one considers the FSS of an ion as a quadrupole consisting of opposite dipoles, as illustrated in Fig. 9.10b, the net negative contribution still remains at an arbitrary threshold \(\hat {z}_{\text{thres}}\). This mechanism is same with the χ IQB term of the quadrupole contribution in Appendix A.1.

Bibliography

  1. Agmon N, Bakker HJ, Campen RK, Henchman RH, Pohl P, Roke S, Thämer M, Hassanali A (2016) Protons and hydroxide ions in aqueous systems. Chem Rev 116:7642–7672

    Google Scholar 

  2. Baldelli S, Schnitzer C, Shultz MJ, Campbell DJ (1997) Sum frequency generation investigation of water at the surface of H2O/H2SO4 binary systems. J Phys Chem B 101:10435–10441

    Google Scholar 

  3. Ball P (2008) Water – an enduring mystery. Nature 452:291–292

    Google Scholar 

  4. Benjamin I (1994) Vibrational spectrum of water at the liquid/vapor interface. Phys Rev Lett 73:2083–2086

    Google Scholar 

  5. Benjamin I (1995) Theory and computer simulations of solvation and chemical reactions at liquid interfaces. Acc Chem Res 28:233–239

    Google Scholar 

  6. Benjamin I (2015) Reaction dynamics at liquid interfaces. Annu Rev Phys Chem 66:165–188

    Google Scholar 

  7. Berg JM, Tymoczko JL, Gregory J, Gatto J, Stryer L (2015) Biochemistry, 8th edn. W. H. Freeman, New York

    Google Scholar 

  8. Bonn M, Bakker HJ, Ghosh A, Yamamoto S, Sovago M, Campen RK (2010) Structural inhomogeneity of interfacial water at lipid monolayers revealed by surface-specific vibrational pump-probe spectroscopy. J Am Chem Soc 132:14971–14978

    Google Scholar 

  9. Bonn M, Nagata Y, Backus EHG (2015) Molecular structure and dynamics of water at the water-air interface studied with surface-specific vibrational spectroscopy. Angew Chem Int Ed 54:5560–5576

    Google Scholar 

  10. Buch V (2005) Molecular structure and OH-stretch spectra of liquid water surface. J Phys Chem B 109:17771–17774

    Google Scholar 

  11. Buch V, Tarbuck T, Richmond GL, Groenzin H, Li I, Shultz MJ (2007) Sum frequency generation surface spectra of ice, water, and acid solution investigated by an exciton model. J Chem Phys 127:204710

    Google Scholar 

  12. Chang T, Dang LX (1996) Molecular dynamics simulations of CCl4-H2O liquid-liquid interface with polarizable potential models. J Chem Phys 104:6772–6783

    Google Scholar 

  13. Das B, Sharma B, Chandra A (2018) Effects of tert-Butyl alcohol on water at the liquid-vapor interface: structurally bulk-like but dynamically slow interfacial water. J Phys Chem C 122:9374–9388

    Google Scholar 

  14. Du Q, Superfine R, Freysz E, Shen YR (1993) Vibrational spectroscopy of water at the vapor/water interface. Phys Rev Lett 70:2313–2316

    Google Scholar 

  15. Faraday M (1850) On certain conditions of freezing water. The Athenaeum 1181:640

    Google Scholar 

  16. Franks F (ed) (1972) Water: a comprehensive treatise, vol 1. Plenum Press, New York

    Google Scholar 

  17. Gopalakrishnan S, Jungwirth P, Tobias DJ, Allen HC (2005) Air-liquid interfaces of aqueous solutions containing ammonium and sulfate: spectroscopic and molecular dynamics studies. J Phys Chem B 109:8861–8872

    Google Scholar 

  18. Gopalakrishnan S, Liu D, Allen HC, Kuo M, Shultz MJ (2006) Vibrational spectroscopic studies of aqueous interfaces: salts, acids, bases, and nanodrops. Chem Rev 106:1155–1175

    Google Scholar 

  19. Groenzin H, Li I, Buch V, Shultz MJ (2007) The single-crystal, basal face of ice Ih investigated with sum frequency generation. J Chem Phys 127:214502

    Google Scholar 

  20. Haynes WM (ed) (2012) CRC handbook of chemistry and physics, 93rd edn. CRC Press, Boca Raton

    Google Scholar 

  21. Heydweiller A (1910) Über physikalische Eigenschaften von Lösungen in ihrem Zusammenhang. II. Oberflächenspannung und elektrisches Leitvermögen wässeriger Salzlösungen. Ann Physik 4 33:145–185

    Google Scholar 

  22. Hua W, Verreault D, Allen HC (2015) Solvation of calcium-phosphate headgroup complex at the DPPC/aqueous interface. Chem Phys Chem 16:3910–3915

    Google Scholar 

  23. Imamura T, Mizukoshi Y, Ishiyama T, Morita A (2012) Surface structures of NaF and Na2SO4 aqueous solutions: specific effects of hard ions on surface vibrational spectra. J Phys Chem C 116:11082–11090

    Google Scholar 

  24. Imamura T, Ishiyama T, Morita A (2014) Molecular dynamics analysis of naoh aqueous solution surface and the sum frequency generation spectra: is surface OH detected by SFG spectroscopy? J Phys Chem C 118:29017–29027

    Google Scholar 

  25. Inoue K, Ishiyama T, Nihonyanagi S, Yamaguchi S, Morita A, Tahara T (2016) Efficient spectral diffusion at the air/water interface revealed by femtosecond time-resolved heterodyne-detected vibrational sum frequency generation spectroscopy. J Phys Chem Lett 7:1811–1815

    Google Scholar 

  26. Ishiyama T, Morita A (2007) Molecular dynamics analysis of interfacial structures and sum frequency generation spectra of aqueous hydrogen halide solutions. J Phys Chem A 111:9277–9285

    Google Scholar 

  27. Ishiyama T, Morita A (2007) Molecular dynamics study of gas-liquid aqueous sodium halide interfaces. I. Flexible and polarizable molecular modeling and interfacial properties. J Phys Chem C 111:721–737

    Google Scholar 

  28. Ishiyama T, Morita A (2007) Molecular dynamics study of gas-liquid aqueous sodium halide interfaces II. Analysis of vibrational sum frequency generation spectra. J Phys Chem C 111:738–748

    Google Scholar 

  29. Ishiyama T, Morita A (2009) Analysis of anisotropic local field in sum frequency generation spectroscopy with the charge response kernel water model. J Chem Phys 131:244714

    Google Scholar 

  30. Ishiyama T, Morita A (2011) Molecular dynamics simulation of sum frequency generation spectra of aqueous sulfuric acid solution. J Phys Chem C 115:13704–13716

    Google Scholar 

  31. Ishiyama T, Morita A (2014) A direct evidence of vibrationally delocalized response at ice surface. J Chem Phys 141:18C503

    Google Scholar 

  32. Ishiyama T, Morita A (2017) Computational analysis of vibrational sum frequency generation spectroscopy. Annu Rev Phys Chem 68:355–377

    Google Scholar 

  33. Ishiyama T, Morita A, Miyamae T (2011) Surface structure of sulfuric acid solution relevant to sulfate aerosol: molecular dynamics simulation combined with sum frequency generation measurement. Phys Chem Chem Phys 13:20965–20973

    Google Scholar 

  34. Ishiyama T, Sato Y, Morita A (2012) Interfacial structures and vibrational spectra at liquid/liquid boundaries: molecular dynamics study of water/carbon tetrachloride and water/1,2-dichloroethane interfaces. J Phys Chem C 116:21439–21446

    Google Scholar 

  35. Ishiyama T, Takahashi H, Morita A (2012) Origin of vibrational spectroscopic response at ice surface. J Phys Chem Lett 3:3001–3006

    Google Scholar 

  36. Ishiyama T, Imamura T, Morita A (2014) Theoretical studies of structures and vibrational sum frequency generation spectra at aqueous interfaces. Chem Rev 114:8447–8470

    Google Scholar 

  37. Ishiyama T, Terada D, Morita A (2016) Hydrogen-bonding structure at zwitterionic lipid/water interface. J Phys Chem Lett 7:216–220

    Google Scholar 

  38. Ishiyama T, Shirai S, Okumura T, Morita A (2018) Molecular dynamics study of structure and vibrational spectra at zwitterionoic lipid/aqueous KCl, NaCl, and CaCl2 solution interfaces. J Chem Phys 148:222801

    Google Scholar 

  39. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, Oxford

    Google Scholar 

  40. Ji N, Ostroverkhov V, Tian CS, Shen YR (2008) Characterization of vibrational resonances of water-vapor interfaces by phase-sensitive sum-frequency spectroscopy. Phys Rev Lett 100:096102

    Google Scholar 

  41. Johnson CM, Baldelli S (2014) Vibrational sum frequency spectroscopy studies of the influence of solutes and phospholipids at vapor/water interfaces relevant to biological and environmental systems. Chem Rev 114:8416–8446

    Google Scholar 

  42. Jungwirth P, Tobias DJ (2001) Molecular structure of salt solutions: a new view of the interface with implications for heterogeneous atmospheric chemistry. J Phys Chem B 105:10468–10472

    Google Scholar 

  43. Jungwirth P, Finlayson-Pitts BJ, Tobias DJ (eds) (2006) Structure and chemistry at aqueous interfaces. Chem Rev 106:1137–1539

    Google Scholar 

  44. Jungwirth P et al (2008) Water – from interfaces to the bulk. Faraday Discuss 141:1–488

    Google Scholar 

  45. Kawaguchi T, Shiratori K, Henmi Y, Ishiyama T, Morita A (2012) Mechanisms of sum frequency generation from liquid benzene: symmetry breaking at interface and bulk contribution. J Phys Chem C 116:13169–13182

    Google Scholar 

  46. Khatib R, Hasegawa T, Sulpizi M, Backus EHG, Bonn M, Nagata Y (2016) Molecular dynamics simulations of SFG librational modes spectra of water at the water-air interface. J Phys Chem C 120:18665–18673

    Google Scholar 

  47. Kundu A, Tanaka S, Ishiyama T, Ahmed M, Inoue K, Nihonyanagi S, Sawai H, Yamaguchi S, Morita A, Tahara T (2016) Bend vibration of surface water investigated by heterodyne-detected sum frequency generation and theoretical study: dominant role of quadrupole. J Phys Chem Lett 7:2597–2601

    Google Scholar 

  48. Leich MA, Richmond GL (2005) Recent experimental advances in studies of liquid/liquid interfaces. Faraday Discuss 129:1–21, and the papers in this issue

    Google Scholar 

  49. Liu D, Ma G, Levering LM, Allen HC (2004) Vibrational spectroscopy of aqueous sodium halide solutions and air-liquid interfaces: observation of increased interfacial depth. J Phys Chem B 108:2252–2260

    Google Scholar 

  50. Matsuzaki K, Nihonyanagi S, Yamaguchi S, Nagata T, Tahara T (2013) Vibrational sum frequency generation by the quadrupolar mechanism at the nonpolar benzene/air interface. J Phys Chem Lett 4:1654–1658

    Google Scholar 

  51. McGuire JA, Shen YR (2006) Ultrafast vibrational dynamics at water interfaces. Science 313:1945–1948

    Google Scholar 

  52. Medders GR, Paesani F (2016) Dissecting the molecular structure of the air/water interface from quantum simulations of the sum-frequency generation spectrum. J Am Chem Soc 138:3912–3919

    Google Scholar 

  53. Miyamae T, Morita A, Ouchi Y (2008) First acid dissociation at an aqueous H2SO4 interface with sum frequency generation spectroscopy. Phys Chem Chem Phys 10:2010–2013

    Google Scholar 

  54. Mondal JA, Nihonyanagi S, Yamaguchi S, Tahara T (2012) Three distinct water structures at a zwitterionic lipid/water interface revealed by heterodyne-detected vibrational sum frequency generation. J Am Chem Soc 134:7842–7850

    Google Scholar 

  55. Moore FG, Richmond GL (2008) Integration or segregation: how do molecules behave at oil/water interfaces? Acc Chem Res 41:739–748

    Google Scholar 

  56. Morita A (2006) Improved computation of sum frequency generation spectrum of water surface. J Phys Chem B 110:3158–3163

    Google Scholar 

  57. Morita A, Hynes JT (2000) A theoretical analysis of the sum frequency generation spectrum of the water surface. Chem Phys 258:371–390

    Google Scholar 

  58. Mucha M, Frigato T, Levering LM, Allen HC, Tobias DJ, Dang LX, Jungwirth P (2005) Unified molecular picture of the surfaces of aqueous acid, base, and salt solutions. J Phys Chem B 109:7617–7623

    Google Scholar 

  59. Nagata Y, Mukamel S (2010) Vibrational sum-frequency generation spectroscopy at the water/lipid interface: molecular dynamics simulation study. J Am Chem Soc 132:6434–6442

    Google Scholar 

  60. Nagata Y, Hsieh C-S, Hasegawa T, Voll J, Backus EHG, Bonn M (2013) Water bending mode at the water-vapor interface probed by sum-frequency generation spectroscopy: a combined molecular dynamics simulation and experimental study. J Phys Chem Lett 4:1872–1877

    Google Scholar 

  61. Nagata Y, Ohto T, Backus EHG, Bonn M (2016) Molecular modeling of water interfaces: from molecular spectroscopy to thermodynamics. J Phys Chem B 120:3785–3796

    Google Scholar 

  62. Nagata Y, Pool R, Backus EHG, Bonn M (2012) Nuclear quantum effects affect bond orientation of water at the water-vapor interface. Phys Rev Lett 109:226101

    Google Scholar 

  63. Nelson DL, Cox MM (2013) Lehninger: principles of biochemistry, 6th edn. W. H. Freeman, New York

    Google Scholar 

  64. Ni Y, Skinner JL (2015) IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively. J Chem Phys 143:014502

    Google Scholar 

  65. Nihonyanagi S, Yamaguchi S, Tahara T (2009) Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study. J Chem Phys 130:204704

    Google Scholar 

  66. Nihonyanagi S, Ishiyama T, Lee T-K, Yamaguchi S, Bonn M, Morita A, Tahara T (2011) Unified molecular view of air/water interface based on experimental and theoretical χ (2) spectra of isotopically diluted water surface. J Am Chem Soc 133:16875–16880

    Google Scholar 

  67. Nihonyanagi S, Kusaka R, Inoue K, Adhikari A, Yamaguchi S, Tahara T (2015) Accurate determination of complex χ (2) spectrum of the air/water interface. J Chem Phys 143:124707

    Google Scholar 

  68. Nojima Y, Suzuki Y, Takahashi M, Yamaguchi S (2017) Proton order toward the surface of ice Ih revealed by heterodyne- detected sum frequency generation spectroscopy. J Phys Chem Lett 8:5031–5034

    Google Scholar 

  69. Ohto T, Backus EHG, Hsieh CS, Sulpizi M, Bonn M, Nagata Y (2015) Lipid carbonyl groups terminate the hydrogen-bond network of membrane-bound water. J Phys Chem Lett 6:4499–4503

    Google Scholar 

  70. Onsager L, Samaras NNT (1934) The surface tension of Debye-Hückel electrolytes. J Chem Phys 2:528–536

    Google Scholar 

  71. Otsuki Y, Sugimoto T, Ishiyama T, Morita A, Watanabe K, Matsumoto Y (2017) Unveiling subsurface hydrogen-bond structure of hexagonal water ice. Phys Rev B 96:115405

    Google Scholar 

  72. Ottosson N, Faubel M, Bradforth SE, Jungwirth P, Winter B (2010) Photoelectron spectroscopy of liquid water and aqueous solution: electron effective attenuation lengths and emission-angle anisotropy. J Elec Spec Rel Phen 177:60–70

    Google Scholar 

  73. Perry A, Ahlborn H, Space B, Moore PB (2003) A combined time correlation function and instantaneous normal mode study of the sum frequency generation spectroscopy of the water/vapor interface. J Chem Phys 118:8411–8419

    Google Scholar 

  74. Perry A, Neipert C, Kasprzyk CR, Green T, Space B, Moore PB (2005) A theoretical description of the polarization dependence of the sum frequency generation spectroscopy of the water/vapor interface. J Chem Phys 123:144705

    Google Scholar 

  75. Perry A, Neipert C, Ridley C, Space B, Moore PB (2005) Identification of a wagging vibrational mode of water molecules at the water/vapor interface. Phys Rev E 71:050601

    Google Scholar 

  76. Perry A, Neipert C, Space B, Moore PB (2006) Theoretical modeling of interface specific vibrational spectroscopy: methods and applications to aqueous interfaces. Chem Rev 106:1234–1258

    Google Scholar 

  77. Petersen PB, Saykally RJ (2006) On the nature of ions at the liquid water surface. Annu Rev Phys Chem 57:333–364

    Google Scholar 

  78. Petersen MK, Iyengar SS, Day TJF, Voth GA (2004) The hydrated proton at the water liquid/vapor interface. J Phys Chem B 108:14804–14806 (2004)

    Google Scholar 

  79. Petrenko VF, Whitworth RW (1999) Physics of ice. Oxford University Press, Oxford

    Google Scholar 

  80. Pieniazek PA, Tainter CJ, Skinner JL (2011) Interpretation of the water surface vibrational sum-frequency spectrum. J Chem Phys 135:044701

    Google Scholar 

  81. Pieniazek PA, Tainter CJ, Skinner JL (2011) Surface of liquid water: three-body ineractions and vibrational sum-frequency spectroscopy. J Am Chem Soc 133:10360–10363

    Google Scholar 

  82. Pohorille A, Wilson MA (1996) Excess chemical potential of small solutes across water-membrane and water-hexane interfaces. J Chem Phys 104:3760–3773

    Google Scholar 

  83. Radüge C, Pflumio V, Shen YR (1997) Surface vibrational spectroscopy of sulfuric acid-water mixtures at the liquid-vapor interface. Chem Phys Lett 274:140–144

    Google Scholar 

  84. Randles JEB (1977) Structure at the free surface of water and aqueous electrolyte solutions. Phys Chem Liq 7:107–179

    Google Scholar 

  85. Raymond EA, Richmond GL (2004) Probing the molecular structure and bonding of the surface of aqueous salt solutions. J Phys Chem B 108:5051–5059

    Google Scholar 

  86. Re S, Nishima W, Tahara T, Sugita Y (2014) Mosaic of water orientation structures at a neutral zwitterionic lipid/water interface revealed by molecular dynamics simulations. J Phys Chem Lett 5:4343–4348

    Google Scholar 

  87. Reddy SK, Thiraux R, Rudd BAW, Lin L, Adel T, Joutsuka T, Geiger FM, Allen HC, Morita A, Paesani F (2018) Bulk contributions modulate the sum-frequency generation spectra of interfacial water on model sea-spray aerosols. Chem. https://doi.org/10.1016/j.chempr.2018.04.007

  88. Richmond GL (2002) Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy. Chem Rev 102:2693–2724

    Article  CAS  PubMed  Google Scholar 

  89. Richmond GL (ed) (2014) Special section: aqueous interfaces. Chem Rev 114:8361–8498

    Google Scholar 

  90. Roy S, Hore D (2012) Simulated structure and nonlinear vibrational spectra of water next to hydrophobic and hydrophilic solid surfaces. J Phys Chem C 116:22867–22877

    Article  CAS  Google Scholar 

  91. Roy S, Gruenbaum SM, Skinner JL (2014) Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces. J Chem Phys 141:18C502

    Google Scholar 

  92. Sánchez MA, Kling T, Ishiyama T, van Zadel M-J, Bisson PJ, Mezger M, Jochum MN, Cyran JD, Smit WJ, Bakker HJ, Shultz MJ, Morita A, Donadio D, Nagata Y, Bonn M, Backus EHG (2017) Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice. Proc Natl Acad Sci 114:227–232

    Article  PubMed  Google Scholar 

  93. Shen YR, Ostroverkhov V (2006) Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem Rev 106:1140–1154

    Article  CAS  PubMed  Google Scholar 

  94. Shultz MJ, Schnitzer C, Simonelli D, Baldelli S (2000) Sum frequency generation spectroscopy of the aqueous interfaces: ionic and soluble molecular solutions. Int Rev Phys Chem 19:123–153

    Article  CAS  Google Scholar 

  95. Shultz MJ, Bisson P, Groenzin H, Li I (2010) Multiplexed polarization spectroscopy: measuring surface hyperpolarizability orientation. J Chem Phys 133:054702

    Article  PubMed  Google Scholar 

  96. Skinner JL, Pieniazek PA, Gruenbaum SM (2012) Vibrational spectroscopy of water at interfaces. Acc Chem Res 45:93–100

    Article  CAS  PubMed  Google Scholar 

  97. Smit WJ, Tang F, Nagata Y, Sánchez MA, Hasegawa T, Backus EHG, Bonn M, Bakker HJ (2017) Observation and identification of a new oh stretch vibrational band at the surface of ice. J Phys Chem Lett 8:3656–3660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sovago M, Campen RK, Wurpel GWH, Müller M, Bakker HJ, Bonn M (2008) Vibrational response of hydrogen-bonded interfacial watger is dominated by intramolecular coupling. Phys Rev Lett 100:173901

    Article  PubMed  Google Scholar 

  99. Sovago M, Campen RK, Bakker HJ, Bonn M (2009) Hydrogen bonding strength of interfacial water determined with surface sum-frequency generation. Chem Phys Lett 470:7–12

    Article  CAS  Google Scholar 

  100. Steel WH, Walker RA (2003) Measuring dipolar width across liquid-liquid interfaces with ‘molecular rulers’. Nature 424:296–299

    Article  CAS  PubMed  Google Scholar 

  101. Steel WH, Walker RA (2003) Solvent polarity at an aqueous/alkane interface: the effect of solute identity. J Am Chem Soc 125:1132–1133

    Article  CAS  PubMed  Google Scholar 

  102. Su X, Lianos L, Shen YR, Somorjai GA (1998) Surface-induced ferroelectric ice on Pt(111). Phys Rev Lett 80:1533–1536

    Article  CAS  Google Scholar 

  103. Sulpizi M, Salanne M, Sprik M, Gaigeot M (2013) Vibrational sum frequency generation spectroscopy of the water liquid.vapor interface from density functional theory-based molecular dynamics simulations. J Phys Chem Lett 4:83–87

    Article  CAS  PubMed  Google Scholar 

  104. Tarbuck TL, Ota ST, Richmond GL (2006) Spectroscopic studies of solvated hydrogen and hydroxidde ions at aqueous surfaces. J Am Chem Soc 128:14519–14527

    Article  CAS  PubMed  Google Scholar 

  105. Tian C-S, Shen YR (2009) Isotopic dilution study of the water/vapor interface by phase-sensitive sum-frequency vibrational spectroscopy. J Am Chem Soc 131:2790–2791

    Article  CAS  PubMed  Google Scholar 

  106. Tian CS, Ji N, Waychunas GA, Shen YR (2008) Interfacial structures of acidic and basic aqueous solutions. J Am Chem Soc 130:13033–13039

    Article  CAS  PubMed  Google Scholar 

  107. Verreault D, Hua W, Allen HC (2012) From conventional to phase-sensitive vibrational sum frequency generation spectroscopy: probing water organization at aqueous interfaces. J Phys Chem Lett 3:3012–3028

    Article  CAS  PubMed  Google Scholar 

  108. Vinaykin M, Benderskii AV (2012) Vibrational sum-frequency spectrum of the water bend at the air/water interface. J Phys Chem Lett 3:3348–3352

    Article  CAS  Google Scholar 

  109. Walker DS, Richmond GL (2007) Depth profiling of water molecules at the liquid-liquid interface using a combined surface vibrational spectroscopy and molecular dynamics approach. J Am Chem Soc 129:9446–9451

    Article  CAS  PubMed  Google Scholar 

  110. Walker DS, Richmond GL (2007) Understanding the effects of hydrogen bonding at the vapor-water interface: vibrational sum frequency spectroscopy of H2O/HOD/D2O mixtures studied using molecular dynamics simultions. J Phys Chem C 111:8321–8330

    Article  CAS  Google Scholar 

  111. Walker DS, Moore FG, Richmond GL (2007) Vibrational sum frequency spectroscopy and molecular dynamics simulation of the carbon tetrachloride-water and 1,2-dichloroethane-water interfaces. J Phys Chem C 111:6103–6112

    Article  CAS  Google Scholar 

  112. Wan Q, Galli G (2015) First-principles framework to compute sum-frequency generation vibrational spectra of semiconductors and insulators. Phys Rev Lett 115:246404

    Article  PubMed  Google Scholar 

  113. Wei X, Miranda PB, Shen YR (2001) Surface vibrational spectroscopic study of surface melting of ice. Phys Rev Lett 86:1554–1557

    Article  CAS  PubMed  Google Scholar 

  114. Yamaguchi S (2015) Development of single-channel heterodyne-detected sum frequency generation spectroscopy and its application to the water/vapor interface. J Chem Phys 143:034202

    Article  PubMed  Google Scholar 

  115. Zhang Y, Cremer PS (2010) Chemistry of hofmeister anions and osmolytes. Annu Rev Phys Chem 61:63–83

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morita, A. (2018). Applications: Aqueous Interfaces. In: Theory of Sum Frequency Generation Spectroscopy. Lecture Notes in Chemistry, vol 97. Springer, Singapore. https://doi.org/10.1007/978-981-13-1607-4_9

Download citation

Publish with us

Policies and ethics