Skip to main content

Antiaging Strategies Based on Telomerase Activity

  • Chapter
  • First Online:
Molecular Basis and Emerging Strategies for Anti-aging Interventions

Abstract

Telomeres are DNA sequence that are repeated at the end of the linear chromosomes and ensure chromosome stability during replication. Telomere length shortened each cell division and during oxidative stress. When telomeres lose their length critically, cell division can no longer occur which causes cells to enter senescence. Besides, telomeres are sensitive to oxidative stress which can cause telomere shortening. Telomerase, which consists of a structural RNA and two proteins, is a cellular reverse transcriptase. This reverse transcriptase adds new DNA onto the telomeres and thus it is responsible for telomere length. There is no telomerase activity in human somatic cells due to the lack of the human telomerase reverse transcriptase (hTERT) expression; because of this situation, telomeres progressively shortened and finally exhausted with aging process. Telomerase activation is a potentially helpful technique for anti-aging strategy and to combat age-related diseases. Telomerase activators that are chemical molecules activate telomerase, or hTERT is used as an antiaging supplement that is a new era of antiaging nutritional science. This chapter has discussed antiaging strategies based on telomerase activity to combat the aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelfalk C, Lorenz M, Serra V et al (2001) Accelerated telomere shortening in Fanconi anemia fibroblasts – a longitudinal study. FEBS Lett 506:22–26

    Article  CAS  Google Scholar 

  • Ahmed A, Tollefsbol T (2001) Telomeres and telomerase: basic science implications for aging. J Am Geriatr Soc 49:1105–1109

    Article  CAS  Google Scholar 

  • Aubert G, Lansdorp PM (2008) Telomeres and aging. Physiol Rev 88:557–579

    Article  CAS  Google Scholar 

  • Bär C, Povedano JM, Serrano R et al (2016) Telomerase gene therapy rescues telomere length, bone marrow aplasia, and survival in mice with aplastic anemia. Blood 127:1770–1779

    Article  Google Scholar 

  • Batista LF (2014) Telomere biology in stem cells and reprogramming. Prog Mol Biol Transl Sci 125:67–88

    Article  CAS  Google Scholar 

  • Bayne S, Jones MEE, Li H et al (2008) Estrogen deficiency leads to telomerase inhibition, telomere shortening and reduced cell proliferation in the adrenal gland of mice. Cell Res 18:1141–1150

    Article  CAS  Google Scholar 

  • Bernardes de Jesus B, Schneeberger K, Vera E et al (2011) The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence. Aging Cell 10:604–621

    Article  CAS  Google Scholar 

  • Bernardes de Jesus B, Vera E, Schneeberger K et al (2012) Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med 4:691–704. https://doi.org/10.1002/emmm.201200245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackburn EH (1990) Telomeres: structure and synthesis. J Biol Chem 265:5919–5921

    CAS  PubMed  Google Scholar 

  • Blackburn EH (1991) Structure and function of telomeres. Nature 350:569–573

    Article  CAS  Google Scholar 

  • Blackburn EH, Collins K (2011) Telomerase: an RNP enzyme synthesizes DNA. Cold Spring Harb Perspect Biol 3(5). pii: a003558. https://doi.org/10.1101/cshperspect.a003558

    Google Scholar 

  • Blasco MA, Lee HW, Rizen M et al (1997) Mouse models for the study of telomerase. CIBA Found Symp 211:160–170

    CAS  PubMed  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M et al (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    Article  CAS  Google Scholar 

  • Calado RT, Yewdell WT, Wilkerson KL et al (2009) Sex hormones, acting on the TERT gene, increase telomerase activity in human primary hematopoietic cells. Blood 114:2236–2243

    Article  CAS  Google Scholar 

  • Cawthon RM, Smith KR, O’Brien E et al (2003) Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361:393–395

    Article  CAS  Google Scholar 

  • Celli GB, de Lange T (2005) DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat Cell Biol 7:712–718

    Article  CAS  Google Scholar 

  • Chau MN, El Touny LH, Jagadeesh S et al (2007) Physiologically achievable concentrations of genistein enhance telomerase activity in prostate cancer cells via the activation of STAT3. Carcinogenesis 28:2282–2290

    Article  CAS  Google Scholar 

  • Chen Q, Fischer A, Reagan JD et al (1995) Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci U S A 92:4337–4341

    Article  CAS  Google Scholar 

  • Cohen SB, Graham ME, Lovrecz GO et al (2007) Protein composition of catalytically active human telomerase from immortal cells. Science 315:1850–1853

    Article  CAS  Google Scholar 

  • Cong YS, Wright WE, Shay JW (2002) Human telomerase and its regulation. Microbiol Mol Biol Rev 66:407–425

    Article  CAS  Google Scholar 

  • Counter CM, Gupta J, Harley CB et al (1995) Telomerase activity in normal leukocytes and in hematologic malignancies. Blood 85:2315–2320

    CAS  PubMed  Google Scholar 

  • Cristofari G, Adolf E, Reichenbach P et al (2007) Human telomerase RNA accumulation in Cajal bodies facilitates telomerase recruitment to telomeres and telomere elongation. Mol Cell 27:882–889

    Article  CAS  Google Scholar 

  • Darimont C et al (2002) SV40 T antigen and telomerase are required to obtain immortalized human adult bone cells without loss of the differentiated phenotype. Cell Growth Differ 13:59–67

    CAS  PubMed  Google Scholar 

  • De Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110

    Article  Google Scholar 

  • Djojosubroto MW, Choi YS, Lee HW et al (2003) Telomeres and telomerase in aging, regeneration and cancer. Mol Cell 15:164–175

    CAS  Google Scholar 

  • Dock JN, Effros RB (2011) Role of CD8 T cell replicative senescence in human aging and in HIV-mediated Immunosenescence. Aging Dis 2:382–397

    PubMed  PubMed Central  Google Scholar 

  • Dong XX, Hui ZJ, Xiang WX et al (2007) Ginkgo biloba extract reduces endothelial progenitor-cell senescence through augmentation of telomerase activity. J Cardiovasc Pharmacol 49:111–115

    Article  CAS  Google Scholar 

  • Doshida M, Ohmichi M, Tsutsumi S et al (2006) Raloxifene increases proliferation and up-regulates telomerase activity in human umbilical vein endothelial cells. J Biol Chem 281:24270–24278

    Article  CAS  Google Scholar 

  • Dow CT, Harley CB (2016) Evaluation of an oral telomerase activator for early age-related macular degeneration – a pilot study. Clin Ophthalmol 10:243–249

    Article  CAS  Google Scholar 

  • Eitan E, Tichon A, Gazit A et al (2012) Novel telomerase-increasing compound in mouse brain delays the onset of amyotrophic lateral sclerosis. EMBO Mol Med 4:313–329

    Article  CAS  Google Scholar 

  • Farzaneh-Far R, Lin J, Epel ES et al (2010) Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA 303:250–257

    Article  CAS  Google Scholar 

  • Gonzalez-Giraldo Y, Forero DA, Echeverria V et al (2016) Neuroprotective effects of the catalytic subunit of telomerase: a potential therapeutic target in the central nervous system. Ageing Res Rev 28:37–45

    Article  CAS  Google Scholar 

  • Gonzalez-Suarez E, Samper E, Ramirez A et al (2001) Increased epidermal tumors and increased skin wound healing in transgenic mice overexpressing the catalytic subunit of telomerase, mTERT, in basal keratinocytes. EMBO J 20:2619–2630

    Article  CAS  Google Scholar 

  • Gonzalez-Suarez E, Geserick C, Flores JM et al (2005) Antagonistic effects of telomerase on cancer and aging in K5-mTert transgenic mice. Oncogene 24:2256–2270

    Article  CAS  Google Scholar 

  • Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405–413

    Article  CAS  Google Scholar 

  • Greider CW, Blackburn EH (1987) The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51:887–898

    Article  CAS  Google Scholar 

  • Griffith JD, Comeau L, Rosenfield S et al (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503–514

    Article  CAS  Google Scholar 

  • Haendeler J, Hoffmann J, Brandes RP et al (2003) Hydrogen peroxide triggers nuclear export of telomerase reverse transcriptase via Src kinase family-dependent phosphorylation of tyrosine 707. Mol Cell Biol 23:4598–4610

    Article  CAS  Google Scholar 

  • Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA (1999) Creation of human tumour cells with defined genetic elements. Nature 400(6743):464–468

    Article  CAS  Google Scholar 

  • Harley CB, Villeponteau B (1995) Telomeres and telomerase in aging and cancer. Curr Opin Genet Dev 5:249–255

    Article  CAS  Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    Article  CAS  Google Scholar 

  • Harley CB, Kim NW, Prowse KR et al (1994) Telomerase, cell immortality, and cancer. Cold Spring Harb Symp Quant Biol 59:307–315

    Article  CAS  Google Scholar 

  • Harley CB, Liu W, Blasco M et al (2011) A natural product telomerase activator as part of a health maintenance program. Rejuvenation Res 14:45–56

    Article  CAS  Google Scholar 

  • Harley CB, Liu W, Flom PL et al (2013) A natural product telomerase activator as part of a health maintenance program: metabolic and cardiovascular response. Rejuvenation Res 16:386–395

    Article  CAS  Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    Article  CAS  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  Google Scholar 

  • Hiyama K et al (1995) Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J Immunol 155:3711–3715

    CAS  PubMed  Google Scholar 

  • Hockemeyer D, Palm W, Else T et al (2007) Telomere protection by mammalian Pot1 requires interaction with Tpp1. Nat Struct Mol Biol 14:754–761

    Article  CAS  Google Scholar 

  • Holt SE, Aisner DL, Baur J et al (1999) Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev 13:817–826

    Article  CAS  Google Scholar 

  • Jady BE, Richard P, Bertrand E et al (2006) Cell cycle-dependent recruitment of telomerase RNA and Cajal bodies to human telomeres. Mol Biol Cell 17:944–954

    Article  CAS  Google Scholar 

  • Jaskelioff M, Muller FL, Paik JH et al (2011) Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469:102–106

    Article  CAS  Google Scholar 

  • Kim NW, Piatyszek MA, Prowse KR et al (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015

    Article  CAS  Google Scholar 

  • Kim SH, Kaminker P, Campisi J (1999) TIN2, a new regulator of telomere length in human cells. Nat Genet 23:405–412

    Article  CAS  Google Scholar 

  • Klinger RY, Blum JL, Hearn B et al (2006) Relevance and safety of telomerase for human tissue engineering. Proc Natl Acad Sci U S A 103:2500–2505

    Article  CAS  Google Scholar 

  • Le Saux CJ, Davy P, Brampton C et al (2013) A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis. PLoS One 8:e58423

    Article  Google Scholar 

  • Liu KB, Hodes RJ, Weng NP (2001) Cutting edge: telomerase activation in human T lymphocytes does not require increase in telomerase reverse transcriptase (hTERT) protein but is associated with hTERT phosphorylation and nuclear translocation. J Immunol 166:4826–4830

    Article  CAS  Google Scholar 

  • Liu JP, Chen SM, Cong YS et al (2010) Regulation of telomerase activity by apparently opposing elements. Ageing Res Rev 9:245–256

    Article  CAS  Google Scholar 

  • Liu P, Zhao H, Luo Y (2017) Anti-aging implications of Astragalus Membranaceus (Huangqi): a well-known Chinese tonic. Aging Dis 8:868–886

    Article  Google Scholar 

  • Ma L, Chen G, Nie L et al (2009) Effect of Cynomorium songaricum polysaccharide on telomere length in blood and brain of D-galactose-induced senescence mice. Zhongguo Zhong Yao Za Zhi 34:1257–1260

    PubMed  Google Scholar 

  • Mattson MP (2000) Emerging neuroprotective strategies for Alzheimer’s disease: dietary restriction, telomerase activation, and stem cell therapy. Exp Gerontol 35:489–502

    Article  CAS  Google Scholar 

  • Mattson MP, Fu W, Zhang P (2001) Emerging roles for telomerase in regulating cell differentiation and survival: a neuroscientist’s perspective. Mech Ageing Dev 122:659–671

    Article  CAS  Google Scholar 

  • Minamino T, Komuro I (2007) Vascular cell senescence: contribution to atherosclerosis. Circ Res 100:15–26

    Article  CAS  Google Scholar 

  • Molgora B, Bateman R, Sweeney G et al (2013) Functional assessment of pharmacological telomerase activators in human T cells. Cell 2:57–66

    Article  CAS  Google Scholar 

  • Nazari-Shafti TZ, Cooke JP (2015) Telomerase therapy to reverse cardiovascular senescence. Methodist Debakey Cardiovasc J 11:172–175

    Article  Google Scholar 

  • Njajou OT, Hsueh WC, Blackburn EH et al (2009) Association between telomere length, specific causes of death, and years of healthy life in health, aging, and body composition, a population-based cohort study. J Gerontol A Biol Sci Med Sci 64:860–864

    Article  Google Scholar 

  • Oexle K, Zwirner A (1997) Advanced telomere shortening in respiratory chain disorders. Hum Mol Genet 6:905–908

    Article  CAS  Google Scholar 

  • Oh H, Taffet GE, Youker KA et al (2001) Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc Natl Acad Sci U S A 98:10308–10313

    Article  CAS  Google Scholar 

  • Olovnikov AM (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41:181–190

    Article  CAS  Google Scholar 

  • Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42:301–334

    Article  CAS  Google Scholar 

  • Pearce VP, Sherrell J, Lou Z et al (2008) Immortalization of epithelial progenitor cells mediated by resveratrol. Oncogene 27:2365–2374

    Article  CAS  Google Scholar 

  • Ren JG, Xia HL, Just T et al (2001) Hydroxyl radical-induced apoptosis in human tumor cells is associated with telomere shortening but not telomerase inhibition and caspase activation. FEBS Lett 488:123–132

    Article  CAS  Google Scholar 

  • Robertson DM et al (2005) Characterization of growth and differentiation in a telomerase-immortalized human corneal epithelial cell line. Invest Ophthalmol Vis Sci 46:470–478

    Article  Google Scholar 

  • Rubio MA, Davalos AR, Campisi J (2004) Telomere length mediates the effects of telomerase on the cellular response to genotoxic stress. Exp Cell Res 298:17–27

    Article  CAS  Google Scholar 

  • Rudolph KL, Chang S, Millard M et al (2000) Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science 287:1253–1258

    Article  CAS  Google Scholar 

  • Serrano AL, Andres V (2004) Telomeres and cardiovascular disease: does size matter? Circ Res 94:575–584

    Article  CAS  Google Scholar 

  • Sfeir A, Kosiyatrakul ST, Hockemeyer D et al (2009) Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138:90–103

    Article  CAS  Google Scholar 

  • Shay JW, Wright WE (2000) The use of telomerized cells for tissue engineering. Nat Biotechnol 18:22–23

    Article  CAS  Google Scholar 

  • Shay JW, Wright WE (2007) Hallmarks of telomeres in ageing research. J Pathol 211:114–123

    Article  CAS  Google Scholar 

  • Shay JW, Wright WE (2010) Telomeres and telomerase in normal and cancer stem cells. FEBS Lett 584:3819–3825

    Article  CAS  Google Scholar 

  • Simonsen JL, Rosada C, Serakinci N et al (2002) Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol 20:592–596

    Article  CAS  Google Scholar 

  • Skulachev VP (1997) Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis. Biochemistry (Mosc) 62:1191–1195

    CAS  Google Scholar 

  • Sone H, Kagawa Y (2005) Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice. Diabetologia 48:58–67

    Article  CAS  Google Scholar 

  • Stewart SA (2002) Multiple levels of telomerase regulation. Mol Interv 2:481–483

    Article  CAS  Google Scholar 

  • Stewart SA, Bertuch AA (2010) The role of telomeres and telomerase in cancer research. Cancer Res 70:7365–7371

    Article  CAS  Google Scholar 

  • Tichon A, Eitan E, Kurkalli BG et al (2013) Oxidative stress protection by novel telomerase activators in mesenchymal stem cells derived from healthy and diseased individuals. Curr Mol Med 13:1010–1022

    Article  CAS  Google Scholar 

  • Tomas-Loba A, Flores I, Fernández-Marcos PJ et al (2008) Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 135:609–622

    Article  CAS  Google Scholar 

  • Townsley DM, Dumitriu B, Liu D et al (2016) Danazol treatment for telomere diseases. N Engl J Med 374:1922–1931

    Article  CAS  Google Scholar 

  • van Steensel B, de Lange T (1997) Control of telomere length by the human telomeric protein TRF1. Nature 385:740–743

    Article  Google Scholar 

  • van Steensel B, Smogorzewska A, de Lange T (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92:401–413

    Article  Google Scholar 

  • Vaughan MB, Ramirez RD, Brown SA et al (2004) A reproducible laser-wounded skin equivalent model to study the effects of aging in vitro. Rejuvenation Res 7:99–110

    Article  CAS  Google Scholar 

  • Venteicher AS, Abreu EB, Meng Z et al (2009) A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 323:644–648

    Article  CAS  Google Scholar 

  • Villa R, Porta CD, Folini M et al (2001) Possible regulation of telomerase activity by transcription and alternative splicing of telomerase reverse transcriptase in human melanoma. J Invest Dermatol 116:867–873

    Article  CAS  Google Scholar 

  • Weng NP, Granger L, Hodes RJ (1997) Telomere lengthening and telomerase activation during human B cell differentiation. P Natl Acad Sci USA 94:10827–10832

    Article  CAS  Google Scholar 

  • Wright WE, Piatyszek MA, Rainey WE et al (1996) Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 18:173–179

    Article  CAS  Google Scholar 

  • Xin HW, Liu D, Wan M et al (2007) TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature 445:559–562

    Article  CAS  Google Scholar 

  • Yang C, Przyborski S, Cooke MJ et al (2008) A key role for telomerase reverse transcriptase unit in modulating human embryonic stem cell proliferation, cell cycle dynamics, and in vitro differentiation. Stem Cells 26:850–863

    Article  CAS  Google Scholar 

  • Yi X, White DM, Aisner DL et al (2000) An alternate splicing variant of the human telomerase catalytic subunit inhibits telomerase activity. Neoplasia 2:433–440

    Article  CAS  Google Scholar 

  • Yu RA, Chen HJ, He LF et al (2009) Telomerase activity and telomerase reverse transcriptase expression induced by selenium in rat hepatocytes. Biomed Environ Sci 22:311–317

    Article  CAS  Google Scholar 

  • Zhu H, Guo D, Li K et al (2012) Increased telomerase activity and vitamin D supplementation in overweight African Americans. Int J Obes 36:805–809

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasemin Aydin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aydin, Y. (2018). Antiaging Strategies Based on Telomerase Activity. In: Rizvi, S., Çakatay, U. (eds) Molecular Basis and Emerging Strategies for Anti-aging Interventions. Springer, Singapore. https://doi.org/10.1007/978-981-13-1699-9_7

Download citation

Publish with us

Policies and ethics