Skip to main content

Fatigue Hysteresis Behavior of Ceramic-Matrix Composites

  • Chapter
  • First Online:
Damage, Fracture, and Fatigue of Ceramic-Matrix Composites
  • 861 Accesses

Abstract

The fatigue hysteresis behavior of unidirectional, 2D cross-ply and woven, and 2.5D woven fiber-reinforced ceramic-matrix composites (CMCs) are analyzed. Based on the fiber/matrix interface debonding and sliding behavior, the fiber/matrix interface debonding and sliding lengths are determined using the fracture mechanics approach. The fiber/matrix interface debonding ratio and interface sliding ratio are determined for different interface slip cases. The effects of fiber volume fraction, peak stress, matrix crack spacing, interface shear stress, interface debonded energy, fibers failure, fiber Poisson contraction, fiber strength, fiber Weibull modulus, matrix cracking mode, applied cycle number and fiber/matrix interface wear on the fatigue stress–strain hysteresis loops and the fiber/matrix interface debonding and sliding are discussed. The experimental cyclic fatigue stress–strain hysteresis loops of unidirectional SiC/CAS, SiC/1723 and C/SiC, 2D cross-ply SiC/CAS and woven SiC/SiC, and 2.5D woven C/SiC composites under cyclic loading/unloading tensile and tension–tension fatigue loading are predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rouby D, Reynaud P (1993) Fatigue behavior related to interface modification during load cycling in ceramic-matrix fibre composites. Compos Sci Technol 48(1–4):109–118. https://doi.org/10.1016/0266-3538(93)90126-2

    Article  CAS  Google Scholar 

  2. McNulty JC, Zok FW (1999) Low cycle fatigue of Nicalon-fiber-reinforced ceramic composites. Compos Sci Technol 59(10):1597–1607. https://doi.org/10.1016/S0266-3538(99)00019-6

    Article  CAS  Google Scholar 

  3. Reynaud P (1996) Cyclic fatigue of ceramic-matrix composites at ambient and elevated temperatures. Compos Sci Technol 56(7):809–814. https://doi.org/10.1016/0266-3538(96)00025-5

    Article  CAS  Google Scholar 

  4. Evans AG (1997) Design and life prediction issues for high-temperature engineering ceramics and their composites. Acta Mater 45(1):23–40. https://doi.org/10.1016/S1359-6454(96)00143-7

    Article  CAS  Google Scholar 

  5. Mall S, Engesser JM (2006) Effects of frequency on fatigue behavior of CVI C/SiC at elevated temperature. Compos Sci Technol 66(7–8):863–874. https://doi.org/10.1016/j.compscitech.2005.06.020

    Article  CAS  Google Scholar 

  6. Li LB, Song YD (2010) An approach to estimate interface shear stress of ceramic matrix composites from hysteresis loops. Appl Compos Mater 17:309–328. https://doi.org/10.1007/s10443-013-9314-y

    Article  CAS  Google Scholar 

  7. Ruggles-Wrenn MB, Christensen DT, Chamberlain AL, Lane JE, Cook TS (2011) Effect of frequency and environment on fatigue behaviour of a CVI SiC/SiC ceramic matrix composite at 1200 °C. Compo Sci Technol 71:190–196. https://doi.org/10.1016/j.compscitech.2010.11.008

    Article  CAS  Google Scholar 

  8. Li LB, Song YD (2013) Estimate interface shear stress of woven ceramic matrix composites. Appl Compos Mater 20:993–1005. https://doi.org/10.1007/s10443-013-9314-y

    Article  Google Scholar 

  9. Li LB, Song YD, Sun YC (2013) Estimate interface shear stress of unidirectional C/SiC ceramic matrix composites from hysteresis loops. Appl Compos Mater 20:693–707. https://doi.org/10.1007/s10443-012-9297-0

    Article  Google Scholar 

  10. Li LB, Song YD, Sun YC (2013) Modeling loading/unloading hysteresis behaviour of unidirectional C/SiC ceramic matrix composites. Appl Compos Mater 20:655–672. https://doi.org/10.1007/s10443-012-9294-3

    Article  Google Scholar 

  11. Ruggles-Wrenn MB, Jones TP (2013) Tension-compression fatigue of a SiC/SiC ceramic matrix composite at 1200 °C in air and in steam. Int J Fatigue 47:154–160. https://doi.org/10.1016/j.ijfatigue.2012.08.006

    Article  CAS  Google Scholar 

  12. Li LB (2016) Modeling cyclic fatigue hysteresis loops of 2D woven ceramic matrix composites at elevated temperatures in steam. Materials 9:421. https://doi.org/10.3390/ma9060421

    Article  CAS  Google Scholar 

  13. Li LB (2016) Modeling the effect of multiple matrix cracking modes on cyclic hysteresis loops of 2D woven ceramic-matrix composites. Appl Compos Mater 23:555–581. https://doi.org/10.1007/s10443-016-9474-7

    Article  CAS  Google Scholar 

  14. Li LB (2016) Modeling cyclic fatigue hysteresis loops of 2D woven ceramic-matrix composite at elevated temperatures in air considering multiple matrix cracking modes. Theoret Appl Fract Mech 85:246–261. https://doi.org/10.1016/j.tafmec.2016.03.010

    Article  CAS  Google Scholar 

  15. Marshall DB, Evans AG (1985) Failure mechanisms in ceramic-fiber/ceramic-matrix composites. J Am Ceram Soc 68(5):225–231. https://doi.org/10.1111/j.1151-2916.1985.tb15313.x

    Article  CAS  Google Scholar 

  16. Holmes JW, Cho CD (1992) Experimental observation of frictional heating in fiber-reinforced ceramics. J Am Ceram Soc 75(4):929–938. https://doi.org/10.1111/j.1151-2916.1992.tb04162.x

    Article  CAS  Google Scholar 

  17. Fantozzi G, Reynaud P (2009) Mechanical hysteresis in ceramic matrix composites. Mater Sci Eng A 521–522:18–23. https://doi.org/10.1016/j.msea.2008.09.128

    Article  CAS  Google Scholar 

  18. Kotil T, Holmes JW, Comninou M (1990) Origin of hysteresis observed during fatigue of ceramic-matrix composites. J Am Ceram Soc 73(7):1879–1883. https://doi.org/10.1111/j.1151-2916.1990.tb05239.x

    Article  CAS  Google Scholar 

  19. Cho CD, Holmes JW, Barber JR (1991) Estimate of interfacial shear in ceramic composites from frictional heating measurements. J Am Ceram Soc 74(11):2802–2808. https://doi.org/10.1111/j.1151-2916.1991.tb06846.x

    Article  CAS  Google Scholar 

  20. Pryce AW, Smith PA (1993) Matrix cracking in unidirectional ceramic matrix composites under quasi-static and cyclic loading. Acta Metall Mater 41(4):1269–1281. https://doi.org/10.1016/0956-7151(93)90178-U

    Article  CAS  Google Scholar 

  21. Ahn BK, Curtin WA (1997) Strain and hysteresis by stochastic matrix cracking in ceramic matrix composites. J Mech Phys Solids 45(2):177–209. https://doi.org/10.1016/S0022-5096(96)00081-6

    Article  Google Scholar 

  22. Solti JP, Mall S, Robertson DD (1995) Modeling damage in unidirectional ceramic-matrix composites. Compos Sci Technol 54(1):55–66. https://doi.org/10.1016/0266-3538(95)00041-0

    Article  Google Scholar 

  23. Solti JP, Mall S, Robertson DD (1997) Modeling of fatigue in cross-ply ceramic matrix composites. J Compos Mater 31(19):1921–1943. https://doi.org/10.1111/j.1151-2916.1990.tb05239.x

    Article  CAS  Google Scholar 

  24. Vagaggini E, Domergue JM, Evans AG (1995) Relationships between hysteresis measurements and the constituent properties of ceramic matrix composites: I. Theory. J Am Ceram Soc 78(10):2709–2720. https://doi.org/10.1111/j.1151-2916.1995.tb08047.x

    Article  CAS  Google Scholar 

  25. Hutchison JW, Jensen HM (1990) Models of fiber debonding and pullout in brittle composites with friction. Mech Mater 9(2):139–163. https://doi.org/10.1016/0167-6636(90)90037-G

    Article  Google Scholar 

  26. Keith WP, Kedward KT (1995) The stress-strain behavior of a porous unidirectional ceramic matrix composite. Composites 26(3):163–174. https://doi.org/10.1016/0010-4361(95)91379-J

    Article  CAS  Google Scholar 

  27. Li LB, Song YD, Sun ZG (2009) Influence of interface de-bonding on the fatigue hysteresis loops of ceramic matrix composites. Chin J Solids Mech 30:8–14

    Google Scholar 

  28. Li LB (2016) Modeling the effect of oxidation on hysteresis loops of carbon fiber-reinfroced ceramic-matrix composites under static fatigue at elevated temperature. J Eur Ceram Soc 36:465–480. https://doi.org/10.1016/j.jeurceramsoc.2015.11.005

    Article  CAS  Google Scholar 

  29. Li LB, Song YD, Sun ZG (2009) Effect of fiber Poisson contraction on fatigue hysteresis loops of ceramic matrix composites. J Nanjing Univ Aeronaut Astronaut 41:181–186

    CAS  Google Scholar 

  30. Li LB (2013) Modeling hysteresis behavior of cross-ply C/SiC ceramic matrix composites. Compos B 53:36–45. https://doi.org/10.1016/j.compositesb.2013.04.029

    Article  CAS  Google Scholar 

  31. Li LB (2013) Fatigue hysteresis behavior of cross-ply C/SiC ceramic matrix composites at room and elevated temperatures. Mater Sci Eng A 586:160–170. https://doi.org/10.1016/j.msea.2013.08.017

    Article  CAS  Google Scholar 

  32. Li LB, Song YD, Sun YC (2014) Effect of matrix cracking on hysteresis behavior of cross-ply ceramic matrix composites. J Compos Mater 48:1505–1530. https://doi.org/10.1177/0021998313488149

    Article  Google Scholar 

  33. Li LB (2015) Micromechanics modeling of fatigue hysteresis loops in carbon fiber-reinforced ceramic-matrix composites. J Compos Mater 49:3471–3495. https://doi.org/10.1177/0021998314566055

    Article  Google Scholar 

  34. Li LB, Song YD (2011) Influnece of fiber failure on fatigue hysteresis loops of ceramic matrix composites. J Reinf Plast Compos 30:12–25. https://doi.org/10.1177/0731684410386273

    Article  CAS  Google Scholar 

  35. Li LB (2014) Modeling fatigue hysteresis behavior of unidirectional C/SiC ceramic-matrix composites. Compos B 66:466–474. https://doi.org/10.1016/j.compositesb.2014.06.014

    Article  CAS  Google Scholar 

  36. Li LB (2015) Fatigue hysteresis behavior of unidirectional C/SiC ceramic matrix composites at room and elevated temperatures. Mater Sci Eng A 625:1–18. https://doi.org/10.1016/j.msea.2014.11.086

    Article  CAS  Google Scholar 

  37. Li LB (2015) Synergistic effect of arbitrary loading sequence and interface wear on the fatigue hysteresis loops of carbon fiber-reinforced ceramic-matrix composites. Eng Fract Mech 146:67–88. https://doi.org/10.1016/j.engfracmech.2015.07.060

    Article  Google Scholar 

  38. Li LB (2015) Modeling the effect of interface wear on fatigue hysteresis behavior of carbon fiber-reinforced ceramic-matrix composites. Appl Compos Mater 22:887–920. https://doi.org/10.1007/s10443-015-9442-7

    Article  CAS  Google Scholar 

  39. Li LB (2017) Effects of loading type, temperature and oxidation on mechanical hysteresis behavior of carbon fiber-reinforced ceramic-matrix composites. Eng Fract Mech 169:336–353. https://doi.org/10.1016/j.engfracmech.2016.10.010

    Article  Google Scholar 

  40. Li LB (2015) Modeling for fatigue hysteresis loops of carbon fiber-reinforced ceramic-matrix composites under multiple loading. Appl Compos Mater 22:945–959. https://doi.org/10.1007/s10443-015-9444-5

    Article  CAS  Google Scholar 

  41. Li LB (2016) Hysteresis loops of carbon fiber-reinforced ceramic-matrix composites with different fiber preforms. Ceram Int 42:16535–16551. https://doi.org/10.1016/j.ceramint.2016.07.073

    Article  CAS  Google Scholar 

  42. Li LB (2016) Comparison of cyclic hysteresis behavior between cross-ply C/SiC and SiC/SiC ceramic-matrix composites. Materials 9:62. https://doi.org/10.3390/ma9010062

    Article  CAS  Google Scholar 

  43. Budiansky B, Hutchinson JW, Evans AG (1986) Matrix fracture in fiber-reinforced ceramics. J Mech Phys Solids 34(2):167–189. https://doi.org/10.1016/0022-5096(86)90035-9

    Article  Google Scholar 

  44. Evans AG, Zok FW, McMeeking RM (1995) Fatigue of ceramic matrix composites. Acta Metall Mater 43(3):859–875. https://doi.org/10.1016/0956-7151(94)00304-Z

    Article  CAS  Google Scholar 

  45. Zawada LP, Butkus LM, Hartman GA (1991) Tensile and fatigue behavior of silicon carbide fiber-reinforced aluminosilicate glass. J Am Ceram Soc 74(11):2851–2858. https://doi.org/10.1111/j.1151-2916.1991.tb06854.x

    Article  CAS  Google Scholar 

  46. Kuo WS, Chou TW (1995) Multiple cracking of unidirectional and cross-ply ceramic matrix composites. J Am Ceram Soc 78(3):745–755. https://doi.org/10.1111/j.1151-2916.1995.tb08242.x

    Article  CAS  Google Scholar 

  47. Takeda N, Kiriyama M (1999) Matrix crack evolution in SiC fiber/glass matrix cross-ply laminates. Compos A 30(4):593–597. https://doi.org/10.1016/S1359-835X(98)00155-9

    Article  Google Scholar 

  48. Li LB, Song YD (2010) Fatigue behavior of cross-ply C/SiC ceramic matrix composites at ambient and elevated temperatures. In: The 7th International Conference on High Temperature Ceramic Matrix Composites, 20–22 Sep 2010, Bayreuth, Germany, pp 314–319

    Google Scholar 

  49. Fantozzi G, Reynaud P, Rouby D (2001) Thermomechanical behavior of long fibers ceramic-ceramic composites. Silic Indus 66(9–10):109–119

    CAS  Google Scholar 

  50. Lee JW, Daniel IM (1990) Progressive transverse cracking of crossply composite laminates. J Compos Mater 24(11):1225–1243. https://doi.org/10.1177/002199839002401108

  51. Wang SW, Parvizi-Majidi A (1992) Experimental characterization of the tensile behavior of Nicalon fiber-reinforced calcium aluminosilicate composites. J Mater Sci 27(20):5483–5496. https://doi.org/10.1007/BF00541610

    Article  CAS  Google Scholar 

  52. Opalski FA, Mall S (1994) Tension-compression fatigue behavior of a silicon carbide calcium-aluminosilicate ceramic matrix composites. J Reinf Plast Compos 13(5):420–438. https://doi.org/10.1177/073168449401300503

    Article  CAS  Google Scholar 

  53. Li P, Wang B, Zhen WQ, Jiao GQ (2014) Tensile loading/unloading stress-strain behavior of 2D-SiC/SiC composites. Acta Mater Compos Sinica 31:676–682

    CAS  Google Scholar 

  54. Michael K (2010) Fatigue behavior of a SiC/SiC composite at 1000 °C in air and steam. Master Thesis, Air Force Institute of Technology

    Google Scholar 

  55. Jacob D (2010) Fatigue behavior of an advanced SiC/SiC composite with an oxidation inhibited matrix at 1200 °C in air and in steam. Master Thesis, Air Force Institute of Technology

    Google Scholar 

  56. Zhu SJ, Mizuno M, Nagano Y, Cao JW, Kagawa Y et al (1998) Creep and fatigue behavior in an enhanced SiC/SiC composite at high temperature. J Am Ceram Soc 81:2269–2277. https://doi.org/10.1111/j.1151-2916.1998.tb02621.x

    Article  CAS  Google Scholar 

  57. Li LB (2014) Assessment of the interfacial properties from fatigue hysteresis loss energy in ceramic-matrix composites with different fiber preforms. Mater Sci Eng A 613:17–36. https://doi.org/10.1016/j.msea.2014.06.092

    Article  CAS  Google Scholar 

  58. Wang YQ, Zhang LT, Cheng LF, Ma JQ, Zhang WH (2008) Tensile performance and damage evolution of a 2.5-D C/SiC composite characterized by acoustic emission. Appl Compos Mater 15:183–188. https://doi.org/10.1007/s10443-008-9066-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longbiao Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, L. (2018). Fatigue Hysteresis Behavior of Ceramic-Matrix Composites. In: Damage, Fracture, and Fatigue of Ceramic-Matrix Composites. Springer, Singapore. https://doi.org/10.1007/978-981-13-1783-5_2

Download citation

Publish with us

Policies and ethics