Skip to main content

Part of the book series: Lecture Notes in Statistics ((LNS,volume 221))

  • 1075 Accesses

Abstract

Motivated by the overall mean model and the famous Koksma–Hlawka inequality, the main idea of uniform experimental design is to scatter the experimental design points uniformly over the experimental domain. In this regard, uniformity measures constitute the main concept of the uniform experimental design. Discrepancy is a measure which is defined as the deviation between the empirical and the theoretical uniform distribution. Therefore, discrepancy is a measure of uniformity which provides a way of construction of uniform designs. However, there are several discrepancies under different considerations. This chapter introduces the definitions and derives lower bounds for different discrepancies, which can be used to construct uniform designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aronszajn, N.: Theory of reproducing kernels. Trans. Amer. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  Google Scholar 

  • Bundschuh, P., Zhu, Y.C.: A method for exact calculation of the discrepancy of low-dimensional finite point sets (I). In: Abhandlungen aus Math. Seminar, Univ.Hamburg, Bd. 63 (1993)

    Article  MathSciNet  Google Scholar 

  • Chatterjee, K., Qin, H.: A new look on discrete discrepancy. Statist. Probab. Lett. 78, 2988–2991 (2008)

    Article  MathSciNet  Google Scholar 

  • Chatterjee, K., Fang, K.T., Qin, H.: Uniformity in factorial designs with mixed levels. J. Statist. Plann. Inference 128, 593–607 (2005)

    Article  MathSciNet  Google Scholar 

  • Chatterjee, K., Li, Z., Qin, H.: A new lower bound to centered and wrap-round \(l_2\)-discrepancies. Statist. Probab. Lett. 82, 1367–1373 (2012a)

    Google Scholar 

  • Chatterjee, K., Qin, H., Zou, N.: Lee discrepancy on two and three mixed level factorials. Sci. China Ser. A 55, 663–670 (2012b)

    Google Scholar 

  • Clerk, L.d.: A method for exact calculation of the star-discrepancy of plane sets applied to the sequences of hammersley. Mh. Math. 101, 261–278 (1986)

    Google Scholar 

  • D’Agostino, R.B., Stephens, M.A.: Goodness-of-Fit Techniques. Marcel Dekker, New York (1986)

    MATH  Google Scholar 

  • Elsawah, A.M., Qin, H.: New lower bound for centered \(L_{2}\)-discrepancy of four-level U-type designs. Statist. Probab. Lett. 93, 65–71 (2014)

    Google Scholar 

  • Elsawah, A.M., Qin, H.: Mixture discrepancy on symmetric balanced designs. Statist. Probab. Lett. 104, 123–132 (2015)

    Article  MathSciNet  Google Scholar 

  • Elsawah, A.M., Qin, H.: Asymmetric uniform designs based on mixture discrepancy. J. App. Statist. 43(12), 2280–2294 (2016)

    Article  MathSciNet  Google Scholar 

  • Fang, K.T.: The uniform design: application of number-theoretic methods in experimental design. Acta Math. Appl. Sinica 3, 363–372 (1980)

    MathSciNet  Google Scholar 

  • Fang, K.T., Ma, C.X.: Wrap-around \({L}_2\)-discrepancy of random sampling, Latin hypercube and uniform designs. J. Complexity 17, 608–624 (2001b)

    Google Scholar 

  • Fang, K.T., Mukerjee, R.: A connection between uniformity and aberration in regular fractions of two-level factorials. Biometrika 87, 193–198 (2000)

    Article  MathSciNet  Google Scholar 

  • Fang, K.T., Wang, Y.: A note on uniform distribution and experiment design. Chinese Sci. Bull. 26, 485–489 (1981)

    MATH  Google Scholar 

  • Fang, K.T., Ma, C.X., Mukerjee, R.: Uniformity in fractional factorials. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods, pp. 232–241. Springer (2002)

    Google Scholar 

  • Fang, K.T., Ge, G.N., Liu, M.Q.: Uniform supersaturated design and its construction. Sci. China Ser. A 45, 1080–1088 (2002)

    Article  MathSciNet  Google Scholar 

  • Fang, K.T., Lin, D.K.J., Liu, M.Q.: Optimal mixed-level supersaturated design. Metrika 58, 279–291 (2003a)

    Article  MathSciNet  Google Scholar 

  • Fang, K.T., Lu, X., Winker, P.: Lower bounds for centered and wrap-around \(L_2\)-discrepancies and construction of uniform. J. Complexity 20, 268–272 (2003b)

    Google Scholar 

  • Fang, K.T., Tang, Y., Yin, J.X.: Lower bounds for wrap-around \(L_2\)-discrepancy and constructions of symmetrical uniform designs. J. Complexity 21, 757–771 (2005)

    Google Scholar 

  • Fang, K.T., Li, R., Sudjianto, A.: Design and Modeling for Computer Experiments. Chapman and Hall/CRC, New York (2006a)

    Book  Google Scholar 

  • Fang, K.T., Maringer, D., Tang, Y., Winker, P.: Lower bounds and stochastic optimization algorithms for uniform designs with three or four levels. Math. Comp. 75, 859–878 (2006b)

    Article  MathSciNet  Google Scholar 

  • Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Math. Comp. 67, 299–322 (1998a)

    Article  MathSciNet  Google Scholar 

  • Hickernell, F.J.: Lattice rules: How well do they measure up? In: Hellekalek, P., Larcher, G. (eds.) Random and Quasi-Random Point Sets, pp. 106–166. Springer (1998b)

    Google Scholar 

  • Hickernell, F.J., Liu, M.Q.: Uniform designs limit aliasing. Biometrika 89, 893–904 (2002)

    Article  MathSciNet  Google Scholar 

  • Hua, L.K., Wang, Y.: Applications of Number Theory to Numerical Analysis. Springer and Science Press, Berlin and Beijing (1981)

    MATH  Google Scholar 

  • Ke, X., Zhang, R., Ye, H.J.: Two- and three-level lower bounds for mixture \(L_2\)-discrepancy and construction of uniform designs by threshold accepting. J. Complexity 31, 741–753 (2015)

    Google Scholar 

  • Koehler, J.R., Owen, A.B.: Computer experiments. In: Ghosh, S., R.Rao, C. (eds.) Handbook of Statistics, vol. 13, Elsevier Science B. V., Amsterdam, pp. 261–308 (1996)

    Google Scholar 

  • Liu, M.Q., Hickernell, F.J.: \({E(s^2)}\)-optimality and minimum discrepancy in 2-level supersaturated designs, Statist. Sinica 12, 931–939 (2002)

    Google Scholar 

  • McKay, M., Beckman, R., Conover, W.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  • Niederreiter, H.: Application of diophantine approximations to numerical integration. In: Osgood, C.F. (ed.) Diophantine Approximation and Its Applications, pp. 129–199. Academic Press, New York (1973)

    Google Scholar 

  • Niederreiter, H.: Random number generation and Quasi-Monte Carlo methods. In: SIAM CBMS-NSF Regional Conference. Applied Mathematics, Philadelphia (1992)

    Google Scholar 

  • Owen, A.B.: A central limit theorem for Latin hypercube sampling. J. R. Statist. Soc. B 54, 541–551 (1992)

    Google Scholar 

  • Qin, H., Fang, K.T.: Discrete discrepancy in factorial designs. Metrika 60, 59–72H (2004)

    Article  MathSciNet  Google Scholar 

  • Qin, H., Li, D.: Connection between uniformity and orthogonality for symmetrical factorial designs. J. Stat. Plann. Inference 136, 2770–2782 (2006)

    Article  MathSciNet  Google Scholar 

  • Roth, R.M.: Introduction to Coding Theory. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  • Stein, M.L.: Large sample properties of simulations using latin hypercube sampling. Technometrics 29, 143–151 (1987)

    Article  MathSciNet  Google Scholar 

  • Tang, B.: Orthogonal array-based Latin hypercubes. J. Amer. Statat. Assoc. 88, 1392–1397 (1993)

    Article  MathSciNet  Google Scholar 

  • Warnock, T.T.: Computational investigations of low discrepancy point sets. In: Zaremba, S.K. (ed.) Applications of Number Theory to Numerical Analysis, pp. 319–343. Academic Press, New York (1972)

    Chapter  Google Scholar 

  • Weyl, H.: ĂĽber die gleichverteilung der zahlem mod eins. Math. Ann. 77, 313–352 (1916)

    Article  MathSciNet  Google Scholar 

  • Winker, P., Fang, K.T.: Application of threshold accepting to the evaluation of the discrepancy of a set of points. SIAM Numer. Anal. 34, 2038–2042 (1997)

    Article  MathSciNet  Google Scholar 

  • Zhang, Q., Wang, Z., Hu, J., Qin, H.: A new lower bound for wrap-around \(L_2\)-discrepancy on two and three mixed level factorials. Statist. Probab. Lett. 96, 133–140 (2015)

    Google Scholar 

  • Zhou, Y.D., Ning, J.H.: Lower bounds of the wrap-around \(L_2\)-discrepancy and relationships between mlhd and uniform design with a large size. J. Stat. Plann. Inference 138, 2330–2339 (2008)

    Google Scholar 

  • Zhou, Y.D., Ning, J.H., Song, X.B.: Lee discrepancy and its applications in experimental designs. Statist. Probab. Lett. 78, 1933–1942 (2008)

    Article  MathSciNet  Google Scholar 

  • Zhou, Y.D., Fang, K.T., Ning, J.H.: Mixture discrepancy for quasi-random point sets. J. Complexity 29, 283–301 (2013)

    Article  MathSciNet  Google Scholar 

  • Zou, N., Ren, P., Qin, H.: A note on Lee discrepancy. Statist. Probab. Lett. 79, 496–500 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Tai Fang .

Exercises

Exercises

2.1

For a one-factor experiment (\(s=1\)), prove that the n-run design with minimum \({\mathcal {L}}_{\infty }\)-star discrepancy is the following set of evenly spaced points:

$$ \mathcal {P}=\left\{ \frac{1}{2n}, \frac{3}{2n}, \ldots , \frac{2n-1}{2n} \right\} . $$

2.2

Prove that a minimum star discrepancy one-run design takes the form \(\mathcal {P}=\{(z, \ldots ,z)\}\) for z satisfying \(z^{s} + z -1=0\).

2.3

Let \(\mathcal {P}=\{\varvec{x}_k=(x_{k1}, \ldots , x_{ks}), k=1, \ldots , n\}\) be a set of n points on the unit cube \(C^s=[0,1]^s\). The wrap-around \(L_2\)-discrepancy can be calculated by

$$ (WD(\mathcal {P}))^2 = -\left( \frac{4}{3}\right) ^s +\frac{1}{n^2}\left( \frac{3}{2}\right) ^s \sum _{k=1}^n\sum _{l=1}^{n}\left( \frac{5}{6}\right) ^{d_H(k,l)}, $$

where \(d_H(k,l)\) is the Hamming distance between \(\varvec{x}_k\) and \(\varvec{x}_l\).

Prove that \(WD_2(D_1)=WD_2(D_2)\) if \(D_1\) and \(D_2\) are equivalent. Two U-type designs are called equivalent if one can be obtained from the other by (i) exchanging rows or/and (ii) exchanging columns.

2.4

Compare the uniformity of the following two designs under WD, CD, and MD:

$$ \varvec{X}_{1} = \left[ \begin{array}{ccc} 3/4 &{}\quad 3/4 &{}\quad 3/4 \\ 3/4 &{}\quad 3/4 &{}\quad 3/4\\ 3/4 &{}\quad 1/4 &{}\quad 3/4\\ 3/4 &{}\quad 3/4 &{}\quad 1/4 \\ 1/4 &{}\quad 3/4 &{}\quad 1/4 \end{array}\right] ,\ \ \ \varvec{X}_{2} = \left[ \begin{array}{ccc} 1/4 &{}\quad 1/4 &{}\quad 1/4\\ 1/4 &{}\quad 3/4 &{}\quad 3/4\\ 3/4 &{}\quad 1/4 &{}\quad 1/4\\ 3/4 &{}\quad 3/4 &{}\quad 1/4 \\ 1/4 &{}\quad 3/4 &{}\quad 1/4\end{array}\right] . $$

2.5

Write a MATLAB code for calculating \(WD(\mathcal {P}), CD(\mathcal {P}),{MD}(\mathcal {P})\), where \(\mathcal {P}\) is a design on the domain \([0,1]^s\) with n runs and s-factors. Apply your own code to the two designs in Example 2.3.1.

2.6

Prove that the CD, WD, and MD defined in Sect. 2.3 can be expressed as function of their Hamming distances.

2.7

Consider the following four designs.

\(\mathcal {P}_{5-1}\)

\(\mathcal {P}_{5-2}\)

\(\mathcal {P}_{5-3}\)

\(\mathcal {P}_{5-4}\)

1

2

1

2

1

5

1

1

2

4

2

5

2

1

2

5

3

1

3

3

3

4

3

4

4

3

4

1

4

2

4

3

5

5

5

4

5

3

5

2

Calculate the corresponding star discrepancy, CD, WD, MD, and LD for each design, and show your conclusion.

2.8

The inequality between arithmetic mean and geometric mean has been known and is useful for deriving some lower bounds. Prove this inequality stated as follows:

Let \(a_1, \ldots , a_m\) be m nonnegative numbers, and then

$$ \bar{a}\equiv \frac{1}{m}\sum _{i=1}^ma_i\geqslant \left[ \prod _{i=1}^m a_j\right] ^{1/m}\equiv \bar{a}_g, $$

where \(\bar{a}\) is the arithmetic mean and \(\bar{a}_g\) is the geometric mean of \(a_1, \ldots , a_m\). The above equality holds if and only if all the \(a_i\)’s are the same.

2.9

For easily understanding the so-called curse of dimensionality, let us study on the volume of the ball in \(R^n\). A ball of radius r with the center at the origin in \(R^n\) can be expressed as

$$ B_n(r)=\{\varvec{x}: \varvec{x}^T\varvec{x}=x_1^2+\cdots +x_n^2\leqslant r^2\}. $$

It is known that the volume of \(B_3(r)\) is \(\frac{4}{3} \pi r^3\). In general,

$$ \text{ Vol }(B_n(r))=\frac{\pi ^{n/2}}{\Gamma (\frac{n}{2} +1)}r^n. $$

Intuitively, one may think that the volume of \(B_n(r)\) becomes larger and larger. For the unit ball, its volume increases in the first five dimensions, but decreases as n tends to infinity. Study the behavior of the volume of \(B_n(r)\) as n increases.

2.10

What is the Cauchy–Schwarz inequality in the linear inner product space? Give a proof. From the literature, find more applications of the Cauchy–Schwarz inequality.

2.11

Prove Theorems 2.6.27 and 2.6.29.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd. and Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fang, KT., Liu, MQ., Qin, H., Zhou, YD. (2018). Uniformity Criteria. In: Theory and Application of Uniform Experimental Designs. Lecture Notes in Statistics, vol 221. Springer, Singapore. https://doi.org/10.1007/978-981-13-2041-5_2

Download citation

Publish with us

Policies and ethics