Skip to main content

Remote Sensing-Based Forest Biomass Assessment in Northwest Himalayan Landscape

  • Chapter
  • First Online:
Remote Sensing of Northwest Himalayan Ecosystems

Abstract

Forests cover around one-third of the global land cover (4.03 billion hectares) (FAO 2010; Pan et al. 2013) and are among the richest ecosystems in terms of biological and genetic diversity (Köhl et al. 2015). Forests are considered as reservoirs of carbon, and it is stored as biomass (phytomass). The total amount of above- and belowground organic matter of both living and dead plant parts is called biomass (FAO 2005). Net primary productivity (NPP) is majorly accumulated as biomass. Around two-thirds (262.1 PgC) of the global terrestrial biomass is stored by the tropical forests (Pan et al. 2013; Negrón-Juárez et al. 2015). Therefore, forests act as one of the keystones of the global carbon cycle and play a vital role in designing the mitigating strategies for climate change and reducing the emission of greenhouse gases. Hence, forest biomass estimation is useful in quantifying the carbon stock, carbon emissions due to forest degradation and disturbances, carbon budget, productivity, forest planning and management and policy-making (Caputo 2009). Biomass monitoring in regular interval is utmost necessary for understanding the nature (source/sink) of the forest (Kushwaha et al. 2014). In addition, forests are vital sources of livelihood and economic development of any country (Köhl et al. 2015). Forest ecosystems offer numerous goods (timber, fodder, food, etc.) and ecological services (MEA 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahongshangbam J, Patel NR, Kushwaha SPS, Watham T, Dadhwal VK (2016) Estimating Gross Primary Production of a Forest Plantation Area Using Eddy Covariance Data and Satellite Imagery. J Ind Soc Remote Sens 44(6): 895–904.

    Article  Google Scholar 

  • Anaya JA, Chuvieco E, Palacios-Orueta A (2009) Aboveground biomass assessment in Colombia: A remote sensing approach. For Ecol Manag 257:1237–1246

    Article  Google Scholar 

  • Attarchi S, Gloaguen R (2014) Improving the estimation of above ground biomass using dual polarimetric PALSAR and ETM+ data in the Hyrcanian mountain forest (Iran). Rem Sens 6(5):3693–3715

    Article  Google Scholar 

  • Awasthi A, Uniyal SK, Rawat GS, Rajvanshi A (2003) Forest resource availability and its use by the migratory villages of Uttarkashi, Garhwal Himalaya (India). For Ecol Manag 174: 13–24

    Article  Google Scholar 

  • Baral S (2011) Mapping Carbon Stock using High Resolution Satellite Images in Sub-tropical Forest of Nepal, Dessertation, Faculty of Geo-Information and Earth Observation (ITC), University of Twente, Enschede, The Netherlands

    Google Scholar 

  • Baret F, Guyot G (1991) Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens Environ 35(2–3):161–173

    Article  Google Scholar 

  • Birth GS, McVey GR (1968) Measuring the color of growing turf with a reflectance spectrophotometer. Agron J 60(6):640–643

    Article  Google Scholar 

  • Bonan GB, Levis S, Sitch S, Vertenstein M, Oleson KW (2003) A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics. Glob Change Biol 9(11):1543–1566

    Article  Google Scholar 

  • Boschetti M, Bocchi S, Brivio PA (2007) Assessment of pasture production in the Italian Alps using spectrometric and remote sensing information. Agric Ecosyst Environ 118:267–272

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Broge NH, Leblanc E (2001) Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens Environ 76(2):156–172

    Article  Google Scholar 

  • Caputo J (2009) Sustainable forest biomass: promoting renewable energy and forest stewardship. Policy paper, Environmental and Energy Study Institute

    Google Scholar 

  • Carr JR, Myers DE, Glass CE (1985) Cokriging—a computer program. Comput Geosci 11(2): 111–127

    Article  Google Scholar 

  • Casady G, van Leeuwen W, Reed B (2013) Estimating winter annual biomass in the Sonoran and Mojave deserts with satellite- and ground-based observations. Remote Sens 5:909–926

    Article  Google Scholar 

  • Ceccato P, Flasse S, Gregoire JM (2002) Designing a spectral index to estimate vegetation water content from remote sensing data: Part 2. Validation and applications. Remote Sens Environ 82(2):198–207

    Article  Google Scholar 

  • Chacko VJ (1965) A manual on sampling techniques for forest surveys. New Delhi: Manager of Publications, Government of India

    Google Scholar 

  • Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R. 2004. Error Propagation and Scaling for Tropical Forest Biomass Estimates. Philos Trans Royal Soc B: Biol Sci 359: 409–420

    Article  Google Scholar 

  • Chirici G, Barbati A, Corona P, Marchetti M, Travaglini D, Maselli F, Bertini, R. 2008. Non-parametric and parametric methods using satellite images for estimating growing stock volume in Alpine and Mediterranean forest ecosystems. Remote Sens Environ 112(5):2686–2700

    Article  Google Scholar 

  • Chirici G, Corona P, Marchetti M, Mastronardi A, Maselli F, Bottai L, Travaglini D (2012) K-NN FOREST: a software for the non-parametric prediction and mapping of environmental variables by the k nearest neighbors algorithm. Eur J Remote Sens 45:433–442

    Article  Google Scholar 

  • Cochran, W. G. 1963. Sampling techniques. John Wiley and Sons Inc, New York

    Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol 7(4):357–373

    Article  Google Scholar 

  • Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signal Syst 2(4): 303–314

    Article  Google Scholar 

  • Datt B (1999) Remote sensing of water content in Eucalyptus leaves. Aust J Bot 47(6): 909–923

    Article  Google Scholar 

  • Daughtry CST, Walthall CL, Kim MS, De Colstoun EB, McMurtrey JE (2000) Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens Environ 74(2): 229–239

    Article  Google Scholar 

  • Deng Y, Chen X, Chuvieco E, Warner T, Wilson JP (2007) Multi-scale linkages between topographic attributes and vegetation indices in a mountainous landscape. Remote Sens Environ 111:122–134

    Article  Google Scholar 

  • Dhanda P, Nandy S, Kushwaha SPS., Ghosh S, Murthy YVNK, Dadhwal VK (2017) Optimizing spaceborne LiDAR and very high resolution optical sensor parameters for biomass estimation at ICESat/GLAS footprint level using regression algorithms. Prog Phys Geog 41(3): 247–267

    Article  Google Scholar 

  • Dobson MC, Ulaby FT, LeToan T, Beaudoin A, Kasischke ES, Christensen N (1992) Dependence of radar backscatter on coniferous forest biomass. IEEE Trans Geosci Remote Sens 30(2), 412–415

    Article  Google Scholar 

  • Dubayah R, Rich PM (1995) Topographic solar radiation models for GIS. Int J Geogr Inf Syst 9(4):405–419

    Article  Google Scholar 

  • Dwyer PC (2011) A spatial estimation of herbaceous biomass using remote sensing in southern African savannas. M. Sc. thesis, University of the Witwatersrand, Johannesburg

    Google Scholar 

  • Eldeiry A, Garcia LA (2009) Comparison of regression kriging and cokriging techniques to estimate soil salinity using Landsat images. Civil and Environmental Engineering Department, Colorado State University, Fort Collins, CO 80523–1372, Hydrology Day, pp. 27–38

    Google Scholar 

  • FAO (2005) Global Forest Resources Assessment Update 2005, Terms and Definitions (Final Version) (p. 33). Rome: Forest Resources Assessment Program, Working Paper 83, Forest Resources Development Service, Forest Resources Division, FAO

    Google Scholar 

  • FAO (2010) Global forest resources assessment 2010. Rome, Italy

    Google Scholar 

  • Folkesson K, Smith-Jonforsen G, Ulander LM (2009) Model-based compensation of topographic effects for improved stem-volume retrieval from CARABAS-II VHF-band SAR images. IEEE Trans Geosci Rem Sens 47:1045–1055

    Article  Google Scholar 

  • Foody GM, Cutler ME, Mcmorrow J, Pelz D, Tangki H, Boyd DS, Douglas I (2001) Mapping the biomass of Bornean tropical rain forest from remotely sensed data. Global Ecol Biogeogr 10(4):379–386

    Article  Google Scholar 

  • Franco-Lopez H, Ek AR, Bauer ME (2001) Estimating and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method. Remote Sens Environ 77:251–274

    Article  Google Scholar 

  • FRI (2002) Indian woods: their identification, properties and uses, (Revised edition). Dehradun: Forest Research Institute, Indian Council of Forestry Research and Education, Ministry of Environment and Forests, Government of India, I-VI

    Google Scholar 

  • FSI (1996) Volume equations for forests of India, Nepal and Bhutan. Dehradun: Forest Survey of India, Ministry of Environment and Forests, Government of India

    Google Scholar 

  • FSI (2015) India State of Forest Report: Forest Survey of India, Ministry of Environment, Forest and Climate Change, Government of India

    Google Scholar 

  • Gasparri NI, Parmuchi MG, Bono J, Karszenbaum H, Montenegro CL (2010) Assessing multi-temporal Landsat 7 ETM+ images for estimating above-ground biomass in subtropical dry forests of Argentina. J Arid Environ 74:1262–1270

    Article  Google Scholar 

  • Gitelson A, Merzlyak MN (1994) Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J Plant Physiol 143(3):286–292

    Article  Google Scholar 

  • Gitelson AA (2004) Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J Plant Physiol 161(2):165–173

    Article  Google Scholar 

  • Gitelson AA, Kaufman YJ, Stark R, Rundquist D (2002) Novel algorithms for remote estimation of vegetation fraction. Remote Sens Environ 80(1):76–87

    Article  Google Scholar 

  • Guo Z, Chi H, Sun G (2010) Estimating forest aboveground biomass using HJ-1 Satellite CCD and ICESat GLAS waveform data. Science China Earth Sci 53(1):16–25

    Article  Google Scholar 

  • Haripriya GS (2000) Estimates of biomass in Indian forests. Biomass Bioenerg 19(4):245–258

    Article  Google Scholar 

  • Haykin S (1994) Neural Networks: A Comprehensive Foundation. Prentice Hall PTR Upper Saddle River, New Jersey, USA

    Google Scholar 

  • Heyojoo BP, Nandy S (2014) Estimation of above-ground phytomass and carbon in tree resources outside the forest (TROF): A geo-spatial approach. Banko Janakari 24(1):34–40

    Article  Google Scholar 

  • Holmström H, Fransson JES (2003) Combining remotely sensed optical and radar data in kNN estimation of forest variables. For Sci 49(3):409–418

    Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83(1):195–213

    Article  Google Scholar 

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309

    Article  Google Scholar 

  • Hunt ER, Rock BN (1989) Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sens Environ 30(1):43–54

    Article  Google Scholar 

  • Hyde P, Dubayah R, Walker W, Blair JB, Hofton M, Hunsaker C (2006) Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy. Remote Sens Environ 102(1–2):63–73

    Article  Google Scholar 

  • IPCC (2006) IPCC guidelines for national greenhouse gas inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Published: IGES, Japan

    Google Scholar 

  • Jiang G, Zhao D, Zhang G (2008) Seismic evidence for a metastable olivine wedge in the subducting Pacific slab under Japan Sea. Earth Planet Sci Lett 270(3):300–307

    Article  Google Scholar 

  • Jing L, Hu B, Noland T, Li J (2012) An individual tree crown delineation method based on multi-scale segmentation of imagery. ISPRS J. Photogramm. Remote Sens 70:88–98

    Article  Google Scholar 

  • Joos F, Gerber S, Prentice IC, Otto Bliesner BL, Valdes PJ (2004) Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum. Global Biogeochem Cy 18(2)

    Article  Google Scholar 

  • Joshi N, Baumann M, Ehammer A, Fensholt R, Grogan K, Hostert P, Jepsen MR, Kuemmerle T, Meyfroidt P, Mitchard ET, Reiche J (2016) A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens 8(1):70

    Article  Google Scholar 

  • Karna YK, Hussin YA, Gilani H, Bronsveld MC, Murthy MSR, Qamer FM, Karky BS, Bhattarai T, Aigong X, Baniya CB (2015) Integration of WorldView-2 and airborne LiDAR data for tree species level carbon stock mapping in Kayar Khola watershed, Nepal. Int J Appl Earth Obs Geoinform 38:280–291

    Article  Google Scholar 

  • Keeling HC, Phillips OL (2007) The global relationship between forest productivity and biomass. Global Ecol Biogeogr 16(5):618–631

    Article  Google Scholar 

  • Kellndorfer J, W Walker, L Pierce, C Dobson, JA Fites, C Hunsaker, J Vona, M Clutter (2004) Vegetation Height Estimation from Shuttle Radar Topography Mission and National Elevation Datasets. Remote Sens Environ 93 (3):339–358

    Article  Google Scholar 

  • Kim Y, van Zyl JJ (2009) A time-series approach to estimate soil moisture using polarimetric radar data. IEEE T Geosci Remote Sens 47(8):2519–2527

    Article  Google Scholar 

  • Knapp AK, Smith MD (2001) Variation among biomes in temporal dynamics of aboveground primary production. Sci 291(5503):481–484

    Article  Google Scholar 

  • Koch B (2010) Status and Future of Laser Scanning, Synthetic Aperture Radar and Hyperspectral Remote Sensing Data for Forest Biomass Assessment. ISPRS J Photogramm Remote Sens 65 (6):581–590

    Article  Google Scholar 

  • Köhl M, Lasco R, Cifuentes M, Jonsson Ö, Korhonen KT, Mundhenk P, de Jesus Navar J, Stinson G (2015) Changes in forest production, biomass and carbon: Results from the 2015 UN FAO Global Forest Resource Assessment. For Ecol Manag 352:21–34

    Article  Google Scholar 

  • Kushwaha SPS, Nandy S, Gupta M (2014) Growing stock and woody biomass assessment in Asola-Bhatti Wildlife Sanctuary, Delhi, India. Environ Monitor Assess 186(9):5911–5920

    Article  Google Scholar 

  • Labrecque S, Fournier RA, Luther JE, Piercey D (2006) A comparison of four methods to map biomass from LandsatTM and inventory data in western Newfoundland. For Ecol Manag 226:129–144

    Article  Google Scholar 

  • Le Toan T, Quegan S, Davidson MW, Balzter H, Paillou P, Papathanassiou K, Plummer S, Rocca F, Saatchi S, Shugart H, Ulander L (2011) The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens Environ 115(11): 2850–2860

    Article  Google Scholar 

  • Leal RR, Butler P, Lane P, Payne PA (1997) Data fusion and artificial neural networks for biomass estimation. IEE Proceedings-Science, Measurement and Technology 144(2): 69–72

    Article  Google Scholar 

  • Li D (2010) Remotely Sensed Images and GIS Data Fusion for Automatic Change Detection. Int J Image Data Fusion 1(1): 99–108

    Article  Google Scholar 

  • Li X, Gar-On Yeh A, Wang S, Liu K, Liu X, Qian J, Chen X (2007) Regression and analytical models for estimating mangrove wetland biomass in South China using Radarsat images. Int J Remote Sens 28(24):5567–5582

    Article  Google Scholar 

  • Liang S, Li X, Wang J (2012) Advanced Remote Sensing: Terrestrial Information Extraction and Applications. Academic Press, Oxford

    Google Scholar 

  • Liu W, Song C, Schroeder TA, Cohen WB (2008) Predicting forest successional stages using multi-temporal Landsat imagery with forest inventory and analysis data. Int J Remote Sens 29: 3855–3872

    Article  Google Scholar 

  • Lu D (2005) Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int J Rem Sens 26:2509–2525

    Article  Google Scholar 

  • Lu D (2006) The potential and Challenge of Remote Sensing-based Biomass Estimation. Int J Remote Sens 27 (7):1297–1328

    Article  Google Scholar 

  • Lu D, Chen Q, Wang G, Liu L, Li G, Moran E (2014) A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int J Digit Earth 9(1):63–105

    Article  Google Scholar 

  • Lu D, Mausel P, Brond’ızio E, Moran E (2004) Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. For Ecol Manag 198(1–3):149–167

    Article  Google Scholar 

  • Lu D, Q Chen, G Wang, E Moran, M Batistella, M Zhang, G VaglioLaurin, D Saah. (2012) Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates. Int J For Res 2012:436537

    Google Scholar 

  • Maharjan S (2012) Estimation and mapping above ground woody carbon stocks using lidar data and digital camera imagery in the hilly forests of Gorkha, Nepal. Dessertation, Faculty of Geo-Information and Earth Observation (ITC), University of Twente, Enschede, The Netherlands

    Google Scholar 

  • Mangla R, Kumar S, Nandy S (2016) Random forest regression modelling for forest aboveground biomass estimation using RISAT-1 PolSAR and terrestrial LiDAR data. In SPIE Asia-Pacific Remote Sensing (pp. 98790Q–98790Q); doi:https://doi.org/10.1117/12.2227380.

  • Manna S, Nandy S, Chanda A, Akhand A, Hazra S, Dadhwal VK (2014) Estimating aboveground biomass in Avicennia marina plantation in Indian Sundarbans using high-resolution satellite data. J Appl Remote Sens 8(1):083638

    Article  Google Scholar 

  • Mather P, Tso B (2009) Classification methods for remotely sensed data. CRC Press, New York

    Google Scholar 

  • Mather PM (1999) Computer processing of remotely-sensed images. John Wiley & Sons, England

    Google Scholar 

  • Means JE, Acker SA, Harding DJ, Blair JB, Lefsky MA, Cohen WB, Harmon ME, McKee WA (1999) Use of large-footprint scanning airborne lidar to estimate forest stand characteristics in the western cascades of Oregon. Remote Sens Environ 67(3):298–308

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and Human Well-Being: biodiversity synthesis. World Resources Institute, Washington, DC

    Google Scholar 

  • Mitchard ET, Saatchi SS, White L, Abernethy K, Jeffery KJ, Lewis SL, Collins M, Lefsky MA, Leal ME, Woodhouse IH, Meir P (2012) Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park Gabon: overcoming problems of high biomass and persistent cloud. Biogeosci 9:179–191

    Article  Google Scholar 

  • Montesano PM, BD Cook, G Sun, M Simard, RF Nelson, KJ Ranson, Z Zhang, S Luthcke (2013) Achieving Accuracy Requirements for Forest Biomass Mapping: A Spaceborne Data Fusion Method for Estimating Forest Biomass and LiDAR Sampling Error. Remote Sens Environ 130:153–170

    Article  Google Scholar 

  • Mutanga O, Skidmore AK (2004) Hyperspectral band depth analysis for a better estimation of grass biomass (Cenchrus ciliaris) measured under controlled laboratory conditions. Int J Appl Earth Obs Geoinf 5:87–96

    Article  Google Scholar 

  • Muukkonen P, Heiskanen J (2007) Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: a possibility to verify carbon inventories. Remote Sens Environ 107(4):617–624

    Article  Google Scholar 

  • Nandy S, Kushwaha, SPS, Dadhwal VK (2011) Forest degradation assessment in the upper catchment of the river Tons using remote sensing and GIS. Ecolo Indic 11:509–513

    Article  Google Scholar 

  • Nandy S, Singh RP, Ghosh S, Watham T, Kushwaha SPS, Senthil Kumar A, Dadhwal VK (2017) Neural Network-based Modelling for Forest Biomass Assessment. Carbon Manag 8(4):305–317

    Article  Google Scholar 

  • Negi JDS (1984) Biological productivity and cycling of nutrients in managed and man-made ecosystems; Ph.D. Thesis, Garhwal University, Srinagar, India

    Google Scholar 

  • Negi SS (1982) Environmental Problems in the Himalaya. Bishen Singh Mahendra Pal Singh, Dehradun, pp 188

    Google Scholar 

  • Negrón-Juárez RI, Koven CD, Riley WJ, Knox RG, Chambers JQ (2015) Observed allocations of productivity and biomass, and turnover times in tropical forests are not accurately represented in CMIP5 Earth system models. Environ Res Lett 10(6):064017

    Article  Google Scholar 

  • Nelson RF, Kimes DS, Salas WA, Routhier M (2000) Secondary forest age and tropical forest biomass estimation using Thematic Mapper imagery. Biogeosci 50:419–431

    Google Scholar 

  • Overman JPM, HJL Witte, JG Saldarriaga (1994) Evaluation of Regression Models for Above-ground Biomass Determination in Amazon Rainforest. J Trop Ecol 10 (02):207–218

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Phillips OL, Jackson, RB (2013) The structure, distribution, and biomass of the world’s forests. Annu Rev Ecol Evol Syst 44:593–622

    Article  Google Scholar 

  • Powell SL, WB Cohen, SP Healey, RE Kennedy, GG Moisen, KB Pierce, JL Ohmann (2010) Quantification of Live Aboveground Forest Biomass Dynamics with Landsat Time-series and Field Inventory Data: A Comparison of Empirical Modeling Approaches. Remote Sens Environ 114 (5):1053–1068

    Article  Google Scholar 

  • Qi J, Chehbouni A, Huete AR, Kerr YH, Sorooshian S (1994) A modified soil adjusted vegetation index. Remote Sens Environ 48(2):119–126

    Article  Google Scholar 

  • Ren HR, Zhou GS, Zhang XS (2011) Estimation of green aboveground biomass of desert steppe in Inner Mongolia based on red-edge reflectance curve area method. Biosyst Eng 109:385–395

    Article  Google Scholar 

  • Richardson AJ, Wiegand CL (1977) Distinguishing vegetation from soil background information. Photogramm Eng Remote Sens 43(12):1541–1552

    Google Scholar 

  • Rondeaux G, Steven M, Baret F (1996) Optimization of soil-adjusted vegetation indices. Remote Sens Environ 55(2):95–107

    Article  Google Scholar 

  • Roujean JL, Breon FM (1995) Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens Environ 51(3):375–384

    Article  Google Scholar 

  • Rouse Jr J, Haas RH, Schell JA, Deering DW (1974) Monitoring vegetation systems in the Great Plains with ERTS. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740022614.pdf (last accessed 22 July 2017)

  • Sales MH, Souza Jr CM, Kyriakidis PC, Roberts DA, Vidal E (2007) Improving spatial distribution estimation of forest biomass with geostatistics: a case study for rondônia, Brazil. Ecol Model 205:221–230

    Article  Google Scholar 

  • Santin-Janin H, Garel M, Chapuis JL, Pontier D (2009) Assessing the performance of NDVI as a proxy for plant biomass using non-linear models: a case study on the Kerguelen archipelago. Pol Biol 32(6):861–871

    Article  Google Scholar 

  • Sarker LR, Nichol JE (2011) Improved forest biomass estimates using ALOS AVNIR-2 texture indices. Remote Sens Environ 115: 968–977

    Article  Google Scholar 

  • Sharma A, Prasad R, Saksena S, Joshi V (1999) Micro-level sustainable biomass system development in central Himalayas: stress computation and biomass planning. Sust Dev 7 (3):132–139

    Article  Google Scholar 

  • Shimano K (1997) Analysis of the relationship between DBH and crown projection area using a new model. J For Res 2(4): 237–242

    Article  Google Scholar 

  • Shugart HH, Saatchi S, Hall FG (2010) Importance of structure and its measurement in quantifying function of forest ecosystems. J Geophys Res 115 (G2): G00E13

    Article  Google Scholar 

  • Soenen SA, Peddle DR, Hall RJ, Coburn CA, Hall FG (2010) Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain. Remote Sens Environ 114:1325–1337

    Article  Google Scholar 

  • Somanathan E (1991) Deforestation, property rights, and incentives in central Himalaya. Econ Pol Wkly 26:37–46

    Google Scholar 

  • Swatantran A, Dubayah R, Roberts D, Hofton M, Blair JB (2011) Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion. Remote Sens Environ 115(11): 2917–2930

    Article  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2):127–150

    Article  Google Scholar 

  • Valeriano MDM, Sanches IDA, Formaggio AR (2016) Topographic effect on spectral vegetation indices from landsat tm data: is topographic correction necessary? B Cienc Geod 22(1):95–107

    Article  Google Scholar 

  • Vapnik V (2006) Estimation of Dependences Based on Empirical Data. Springer Science & Business Media

    Google Scholar 

  • Veraverbeke S, Verstraeten WW, Lhermitte S, Goossens R (2010) Illumination effects on the differenced Normalized Burn Ratio’s optimality for assessing fire severity. Int J Appl Earth Obs 2:60–70

    Article  Google Scholar 

  • Viana HJ, Lopes AD, Cohenc WB (2012) Estimation of crown biomass of Pinus pinaster stands and shrubland above-ground biomass using forest inventory data, remotely sensed imagery and spatial prediction models. Ecol Model 226:22–35

    Article  Google Scholar 

  • Wang Y, Hou X, Wang M, Wang M, Wu L, Ying L, Feng Y (2012) Topographic controls on vegetation index in a hilly landscape: a case study in the Jiaodong Peninsula, eastern China. Environ Earth Sci 70:625–634

    Article  Google Scholar 

  • Waring RH, Way J, Hunt ER, Morrissey L, Ranson KJ, Weishampel JF, Oren R, Franklin SE (1995) Imaging radar for ecosystem studies. BioSci 45:715–723

    Article  Google Scholar 

  • Watham T, Kushwaha SPS, Nandy S, Patel NR, Ghosh S (2016) Forest carbon stock assessment at Barkot Flux tower Site (BFS) using field inventory, Landsat-8 OLI data and geostatistical techniques. Int J Multidisc Res Dev 3 (5):111–119

    Google Scholar 

  • Watham T, Patel NR, Kushwaha SPS, Dadhwal VK, Kumar AS (2017) Evaluation of remote-sensing-based models of gross primary productivity over Indian sal forest using flux tower and MODIS satellite data. Int J Remote sens 38(18): 5069–5090

    Article  Google Scholar 

  • Webster R, Oliver MA. (2001) Geostatistics for environmental scientists. New York: Wiley.

    Google Scholar 

  • Xiao X, Boles S, Frolking S, Salas W, Moore Iii B, Li C, He L, Zhao R (2002) Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using VEGETATION sensor data. Int J Remote Sens 23(15):3009–3022

    Article  Google Scholar 

  • Xing Y, de Gier A, Zhang J,Wang L (2010) An improved method for estimating forest canopy height using ICESat-GLAS full waveform data over sloping terrain: A case study in Changbai mountains, China. Int J Appl Earth Obs 12(5):385–392

    Article  Google Scholar 

  • Yadav BKV, Nandy S (2015) Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques. Environ Monitor Assess 187(5):1–12

    Article  Google Scholar 

  • Yan F, Wu B, Wang YJ (2013) Estimating aboveground biomass in Mu Us Sandy Land using Landsat spectral derived vegetation indices over the past 30 years. J Arid Land 5:521–530

    Article  Google Scholar 

  • Zhang G, Ganguly S, Nemani RR, White MA, Milesi C, Hashimoto H, Wang W, Saatchi S, Yu Y, Myneni RB (2014) Estimation of forest aboveground biomass in California using canopy height and leaf area index estimated from satellite data. Remote Sens Environ 151:44–56

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Forest Department, Government of Uttarakhand, India, and field staff of Barkot Flux Research Site for their field support. The authors are thankful to NSIDC for providing the ICESat/GLAS data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Nandy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nandy, S., Ghosh, S., Kushwaha, S.P.S., Senthil Kumar, A. (2019). Remote Sensing-Based Forest Biomass Assessment in Northwest Himalayan Landscape. In: Navalgund, R., Kumar, A., Nandy, S. (eds) Remote Sensing of Northwest Himalayan Ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-13-2128-3_13

Download citation

Publish with us

Policies and ethics