Skip to main content

Simulation Outputs of Major Debris Flows in Garhwal Himalaya: A Geotechnical Modeling Approach for Hazard Mitigation

  • Chapter
  • First Online:
Remote Sensing of Northwest Himalayan Ecosystems

Abstract

Landslides, one of the major geological hazards, contribute to natural disasters in mountainous region around the globe owing to a wide variety of causative as well as triggering factors like heavy rainstorms, cloudbursts, glacial lake outburst (GLOF), earthquakes, geo-engineering setting, unplanned human activities, etc. In different parts of the Himalaya, landslide has evolved as a frequent problem which severely affects life, property, and livelihood of this mountainous area thriving mainly on pilgrimage, tourism, and agriculture (Anbalagan et al. 2015; Anbalagan 1992; Champati Ray and Chattoraj 2014; Gupta et al. 1993; Kumar et al. 2012; Onagh et al. 2012; Sarkar et al. 1995, 2006; Sundriyal et al. 2007). With the background of higher elevation, rough hilly landscape, scanty cultivated land, strong monsoonal effect, and less industrial growth restricting economic progress, repeated landslide events keep human life and property at stake (Champati Ray et al. 2013a, b, 2015; Ketholia et al. 2015; Paul and Bisht 1993). Landslides in the Himalayan region are on an average smaller in dimension and have shallow depth, but these are more recurring in nature and thereby do not get noticed by authorities but cause higher cumulative losses over a period of time. Landslides, in the Himalaya, are observed particularly in highly fractured and sheared rock mass close to faults and also in weathered hard rocks. The climatic factors play an important role in weathering and disintegration of rock mass that are finally brought down by gravity (Kumar et al. 2007, 2012). Most of these landslides wreak havocked not only on life and property but manifest changes in landform due to large-scale mass wasting, landslide-dammed lake formation, and breaching leading to large-scale landform modification (Champati Ray 2013; Champati Ray et al. 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anbalagan R (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Engineering Geology 32:269–277

    Article  Google Scholar 

  • Anbalagan R, Kumar R, Lakshmanan, K, Parida S, Neethu S (2015) Landslide hazard zonation mapping using frequency ratio and fuzzy logic approach. A case study of Lachung Valley, Sikkim. Geoenvironmental Disasters 2015 2:6 DOI: https://doi.org/10.1186/s40677-014-0009

  • Ayotte D, Hunger O (2000) Calibration of a runout prediction model for debris flows and avalanches. Paper published in Proceedings of the Second International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Taipei, Taiwan, August 16–18, Rótterdam, pp 505–514

    Google Scholar 

  • Bist KS, Sah MP (1999) The devastating landslide of August 1998 in Ukhimath area, Rudraprayag district, Garhwal Himalaya. Current Science 76 (4):481–484.

    Google Scholar 

  • Bist KS, Sinha AK (1980) Some observations on the geological and structural setup of Okhimath area in Garhwal Himalaya. Himalayan Geology 10: 467–475.

    Google Scholar 

  • Brand EW (1995) Keynote Paper: Slope instability in tropical areas: in Bell (ed.,), Proceedings of the Sixth International Symposium on Landslides, 10–14 February 1992, Christchurch, New Zealand, A.A. Balkema, Rotterdam 3:2031–2051

    Google Scholar 

  • Champati Ray P K, Chattoraj SL, Bisht M P S, Kannaujiya S, Pandey K, Goswami A (2015) Kedarnath disaster 2013: causes and consequences using remote sensing inputs. Nat Hazards (2016) 81:227–243. DOI https://doi.org/10.1007/s11069-015-2076-0

    Article  Google Scholar 

  • Champati Ray PK, (2013). A tale of two lakes from Uttarakhand. Indian Landslides, 6 (2): 1–8

    Google Scholar 

  • Champati Ray PK, Chattoraj SL (2014) Sunkoshi landslide in Nepal and its possible impact in India: a remote sensing based appraisal. International Archive of ISPRS, Commission VIII (WG VIII/1), pp 1345–1351

    Article  Google Scholar 

  • Champati Ray PK, Chattoraj SL, Chand DS, Kannaujiya S (2013a) Aftermath of Uttarakhand disaster 2013: an appraisal on risk assessment and remedial measures for Yamunotri shrine using satellite image interpretation. Indian Landslides 6 (2):61–70

    Google Scholar 

  • Champati Ray PK, Chattoraj SL, Kannaujiya S (2013b) Uttarakhand Disaster 2013: Response and Mitigation measures using remote sensing and GIS. Pre workshop full publication In: National work shop on Geology and Geo-heritage sites of Uttarakhand with special reference to geo-scientific development of the region organized by Indian geological Congress (IGC), Roorkee, jointly with L.S.M. Govt. PG College, Pithoragarh, Nov 11 and 12, pp 37–45

    Google Scholar 

  • Chattoraj SL, Champati Ray PK (2015) Simulation and modelling of debris flows using satellite derived data: A case study from Kedarnath area. International Journal of Geomatics and Geosciences 6(2):1498–1511

    Google Scholar 

  • Chattoraj SL, Champati Ray PK, Bandopadhyay S (2014) Debris Flow Simulation and Modeling: A Case Study from Kedarnath Area. In Abstract Proceedings: Geo-Environmental Hazards and Neo-Tectonic Activities in Himalaya, being held at HNB Garhwal University Campus Badshahi Thaul, Tehri Garhwal, October 28–30, 2014: 26

    Google Scholar 

  • Chattoraj SL, Ketholia Y, Champati Ray PK, Kannaujiya S (2015a) Debris flow modelling and risk assessment of selected landslides from Uttarakhand. All India Seminar on slope stability issues in opencast mining and civil engineering (SSIOME), NIT- Rourkela, 25–26 July, pp 90–95

    Google Scholar 

  • Chattoraj SL, Ketholia Y, Champati Ray PK, Pardeshi P (2015b) 3-Dimensional modeling of 2014-Malin Landslide, Maharashtra using satellite derived data: A quantitative approach by numerical simulation technique Abstract Volume of ISPRS WG VIII/1 Workshop on Geospatial Technology for Disaster Risk Reduction, 17th December 2015, Jaipur, India, pp. 7–8

    Google Scholar 

  • Chattoraj, SL (2016). Debris Flow Modelling and Risk Assessment of Selected Landslides from Uttarakhand- Case Studies using Earth Observation Data, In: Santra, A. and Mitra, S., (Eds.), Remote Sensing Techniques and GIS Applications in Earth and Environmental Studies. IGI Global Publication, Hershey, Pennsylvania, pp. 111–121. ISBN: 978-1-5225-1814-3.

    Google Scholar 

  • Chaturvedi P, Jaiswal B, Sharma S, Tyagi N (2014) Instrumentation Based Dynamics Study of Maithana Landslide near Chamoli, Uttarakhand. International Journal of Research in Advent Technology 10:127–132

    Google Scholar 

  • Christen MK, Walski J, Bartelt P (2010) RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology 63 (1/2):1–14

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslides types and processes, In: Landslides Investigation and Mitigation, in Turner, A. K., and Schuster, R. L., eds., Transport Research Board, Washington, D.C, Special Report 247:36–71

    Google Scholar 

  • Deganutti AM, Marchi L, Arattano M (2000) Rainfall and debris-flow occurrence in the Moscardo basin (Italian Alps): in Wieczorek, G.F., and Naeser, N.D., eds., Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings of the Second International Conference, Taipei, Taiwan, August 16–18, 2000, A.A. Balkema, Rotterdam, pp. 67–72

    Google Scholar 

  • Dobhal DP, Gupta AK, Mehta M, Khandelwal DD (2013) Kedarnath disaster: facts and plausible causes. Current Science 105(2):171–174

    Google Scholar 

  • Gupta RP, Kanungo DP, Arora MK, Sarkar S (2008) Approaches for comparative evaluation of raster GIS-based landslide susceptibility zonation maps. International Journal of Applied Earth Observation and Geoinformation 10:330–341

    Article  Google Scholar 

  • Gupta V, Bist KS (2004) The 23 September 2003 Varunavat Parvat landslide in Uttaranchal township, Uttaranchal. Current Science 87:119–131

    Google Scholar 

  • Gupta V, Sah MP, Virdi NS, Bartarya SK (1993) Landslide hazard zonation in the upper Satlej Valley, District Kinnaur, Himachal Pradesh. J Himal Geol 4:81–93

    Google Scholar 

  • Herva’set J, Barredo JI, Rosin PL, Pasuto A, Mantovani F, Silvano S (2003) Monitoring landslides from optical remotely sensed imagery: the case history of Tessina landslide, Italy. Geomorphology 54:63–75

    Article  Google Scholar 

  • Hungr, Oldrich, Morgan, GC, VanDine, DF, Lister DR (1987) Debris flow defenses in British Columbia, in Costa, J.E., and Wieczorek, G.F., eds., Debris flows/avalanches: Process, recognition and mitigation, Geological Society of America. Reviews in Engineering Geology 7:201–222

    Google Scholar 

  • Islam Md Ashraful, Chattoraj SL, Champati Ray PK (2013) Ukhimath landslide 2012: causes and consequences. International journal Geoinformatics and Geosciences 4 (3):544–557

    Google Scholar 

  • Iverson RM, Denlinger RP, LaHusen RG, Logan M (2000) Two-phase debris flow across 3-D terrain: Model predictions and experimental tests. Paper published in Proceedings of the Second International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Taipei, Taiwan, August 16–18, Rótterdam, pp 521–529.

    Google Scholar 

  • Iverson RM, Reid ME, La Husen RG (1997) Debris-flow mobilization from landslides. The Annual Review of Earth and Planetary Sciences 25:85–138

    Article  Google Scholar 

  • Ketholia Y, Chattoraj SL, Kannaujiya S, Champati Ray PK (2015) Role of Earth Observation Data in determination of Slope Stability in parts of Uttarakhand Himalaya. Full paper in Proceedings of International Conference on Engineering Geology in New Millennium (EGNM), Indian Society of Engineering Geology, IIT Delhi, October 27–29, pp.223

    Google Scholar 

  • Kimothi MM, Garg JK, Ajay, Joshi V (2005) Slope Ancient religious Uttarkashi town (Garhwal Himalayas, Uttaranchal, Observation from IRS-P6 (Resourcesat-1) high resolution LISS-IV data. Map India, pp 1–11

    Google Scholar 

  • Kumar K, Devrani R, Kathait A, Aggarwal N (2012) Micro-Hazard Evaluation and validation of landslide in a part of North Western Garhwal Lesser Himalaya, India. International Journal of Geomatics and Geosciences 2:3

    Google Scholar 

  • Kumar VK, Lakhera RC, Martha TR, Chatterjee RS, Bhattarcharya A (2007) Analysis of the 2003 Varunavat Landslide, Uttarkashi, Indian using Earth Observation data. Environmental Geology 55(4):789–799

    Article  Google Scholar 

  • Martha T, Kumar VK (2013) September, 2012 landslide events in Okhimath, India-an assessment of landslide consequences using very high resolution satellite data. Landslides 10:469–479

    Article  Google Scholar 

  • Naithani AK (2002) The August, 1998 Okhimath tragedy in Rudraprayag district of Garhwal Himalya, Uttaranchal, India. GAIA 16:145–156

    Google Scholar 

  • Onagh M, Kumra VK, Rai PK (2012) Landslide susceptibility mapping in a part of Uttarkashi District (India) by multiple linear regression method. International Journal of Geology, Earth and Environmental Sciences 2(2):102–120

    Google Scholar 

  • Paul D, Bisht MPS (1993) Pravatiya vikas me bhuskhalan ek paryavaryaniya samasya. Himalayan Geology 14:157–170

    Google Scholar 

  • Quan Luna B, Blahut J, van Westen CJ, Sterlacchini S, van Asch TWJ, Akbas SO (2011) The application of numerical debris flow modelling for the generation of physical vulnerability curves. Natural Hazards and Earth System Sciences 11:2047–2060

    Article  Google Scholar 

  • Rickenmann D (2005) Runout prediction methods. In: M. Jakob & O. Hungr (eds.), Debris-flow Hazard and Relation Phenomena, Chichester. Springer pp 305–324

    Google Scholar 

  • Rickenmann D, Laiglec D, Mc Ardell BW, Huebl J (2006) Comparison of 2d debris-flow simulation models with field events. Computers & Geosciences 10:241–264

    Article  Google Scholar 

  • Salm B, Burkhard A, Gubler HU (1990) Berechnung von Fliesslawinen: Eine Anleitungfuer Praktiker; mit Beispielen. Mitteilungen des Eidgenoessischen Instituts fuerSchnee- und Lawinenforschung 47:1–37

    Google Scholar 

  • Sarkar S, Kanungo DP, Chauhan PKS (2010) Varunabat landslide disaster in Uttarkashi, Garhwal Himalaya, India. Quaternary journal of Engineering geology and Hydrogeology 44:1–8

    Google Scholar 

  • Sarkar S, Kanungo DP, Mehrotra GS (1995) Landslide Hazard Zonation: A Case Study in Garhwal Himalaya, India. Mountain Research and Development 15:301–309

    Article  Google Scholar 

  • Sarkar S, Kanungo DP, Patra AK (2006) Landslides in the Alaknanda Valley of Garhwal Himalaya, India. Quarterly Journal of Engineering Geology and Hydrogeology 39:79–82

    Article  Google Scholar 

  • Sati SP, Naithani A, Rawat GS (1998) Landslides in the Garhwal Lesser Himalaya, UP, India, 18 (3): 149–155.

    Google Scholar 

  • Scott KM (2000) Precipitation-triggered debris-flow at Casita Volcano, Nicaragua: Implications for mitigation strategies in volcanic and tectonically active steeplands. Paper published in Proceedings of the Second International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Taipei, Taiwan, August 16–18, Rótterdam, pp 3–13

    Google Scholar 

  • Sosio R, Crosta GB, Hungr O (2008) Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Engineering Geology 100:11–26

    Article  Google Scholar 

  • Sundriyal YP, Tripathi JK, Sati SP, Rawat GS, Srivastava P (2007) Landslide-dammed lakes in the Alaknanda Basin, Lesser Himalaya: Causes and implications. Current Science 93(4)

    Google Scholar 

  • Thakur VC, Rawat BS (1992) Geologic Map of Western Himalaya, 1:1,000,000, Dehra Dun, India Wadia Institute of Himalayan Geology

    Google Scholar 

  • Tsai MP, Hsu YC, Li HC, Shu HM, Liu KF (2011) Application of simulation technique on debris flow hazard zone delineation: a case study in the Daniao tribe, Eastern Taiwan. Natural Hazards and Earth System Sciences 11:3053–3062

    Article  Google Scholar 

  • Valdiya KS, Paul SK, Chandra T, Bhakuni SS, Upadhyay RC (1999) Tectonic and lithological characterization of Himadri (Great Himalaya) Between Kali and Yamuna rivers, central Himalaya. Himalayan Geology 20(2):1–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shovan Lal Chattoraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chattoraj, S.L., Champati Ray, P.K., Kannaujiya, S. (2019). Simulation Outputs of Major Debris Flows in Garhwal Himalaya: A Geotechnical Modeling Approach for Hazard Mitigation. In: Navalgund, R., Kumar, A., Nandy, S. (eds) Remote Sensing of Northwest Himalayan Ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-13-2128-3_3

Download citation

Publish with us

Policies and ethics