Skip to main content

Techniques in Measuring Intraocular and Intracranial Pressure Gradients

  • Chapter
  • First Online:
Intraocular and Intracranial Pressure Gradient in Glaucoma

Part of the book series: Advances in Visual Science and Eye Diseases ((AVSED,volume 1))

  • 499 Accesses

Abstract

As a part of the central nervous system, the optic nerve goes through the comparatively independent intraocular and retrobulbar pressurized cerebrospinal fluid cavity. Additionally, the central retinal vein and artery pass from the optic nerve head through the optic nerve and the orbital cerebrospinal fluid (CSF) space. The CSF pressure, as the counter pressure against intraocular pressure (IOP) from the opposite side of the lamina cribrosa, may have pathophysiologic importance for several intracranial and intraocular pressure gradient-related ophthalmic disorders, such as glaucomatous optic neuropathy associated with CSF pressure dysregulation [1–12], optic neuropathy secondary to idiopathic intracranial hypertension [13–19], visual impairment syndrome in space [20–22], and retinal vein occlusion [23].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ren R, Jonas JB, Tian G, et al. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology. 2010;117(2):259–66.

    Article  PubMed  Google Scholar 

  2. Berdahl JP, Allingham RR, Johnson DH. Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology. 2008;115(5):763–8.

    Article  PubMed  Google Scholar 

  3. Wang N, Xie X, Yang D, et al. Orbital cerebrospinal fluid space in glaucoma: the Beijing iCOP study. Ophthalmology. 2012;

    Google Scholar 

  4. Berdahl JP, Fautsch MP, Stinnett SS, Allingham RR. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Invest Ophthalmol Vis Sci. 2008;49(12):5412–8.

    Article  PubMed  Google Scholar 

  5. Ren R, Wang N, Zhang X, Cui T, Jonas JB. Trans-lamina cribrosa pressure difference correlated with neuroretinal rim area in glaucoma. Graefes Arch Clin Exp Ophthalmol. 2011;249(7):1057–63.

    Article  PubMed  Google Scholar 

  6. Jonas JB, Wang NL, Wang YX, et al. Estimated trans-lamina cribrosa pressure difference versus intraocular pressure as biomarker for open-angle glaucoma. The Beijing Eye Study. Acta Ophthalmol. 2011;93(1):e7–e13.

    Article  Google Scholar 

  7. Jonas JB, Wang N, Wang YX, You QS, Yang D, Xu L. Ocular hypertension: general characteristics and estimated cerebrospinal fluid pressure. The Beijing Eye Study. PLoS One. 2011;9(7):e100533.

    Article  CAS  Google Scholar 

  8. Ren R, Zhang X, Wang N, Li B, Tian G, Jonas JB. Cerebrospinal fluid pressure in ocular hypertension. Acta Ophthalmol. 2011;89(2):e142–8.

    Article  PubMed  Google Scholar 

  9. Bayer AU, Ferrari F, Erb C. High occurrence rate of glaucoma among patients with Alzheimer’s disease. Eur Neurol. 2002;47(3):165–8.

    Article  CAS  PubMed  Google Scholar 

  10. Wostyn P, Audenaert K, De Deyn PP. More advanced Alzheimer’s disease may be associated with a decrease in cerebrospinal fluid pressure. Cerebrospinal Fluid Res. 2009;6:14.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tamura H, Kawakami H, Kanamoto T, et al. High frequency of open-angle glaucoma in Japanese patients with Alzheimer’s disease. J Neurol Sci. 2006;246(1-2):79–83.

    Article  PubMed  Google Scholar 

  12. Wostyn P, De Groot V, Van Dam D, Audenaert K, De Deyn PP. Senescent changes in cerebrospinal fluid circulatory physiology and their role in the pathogenesis of normal-tension glaucoma. Am J Ophthalmol. 2013;156(1):5–14 e12.

    Article  PubMed  Google Scholar 

  13. Tso MO, Hayreh SS. Optic disc edema in raised intracranial pressure. IV. Axoplasmic transport in experimental papilledema. Arch Ophthalmol. 1977;95(8):1458–62.

    Article  CAS  PubMed  Google Scholar 

  14. Hayreh MS, Hayreh SS. Optic disc edema in raised intracranial pressure. I. Evolution and resolution. Arch Ophthalmol. 1977;95(7):1237–44.

    Article  CAS  PubMed  Google Scholar 

  15. Hayreh SS, Hayreh MS. Optic disc edema in raised intracranial pressure. II. Early detection with fluorescein fundus angiography and stereoscopic color photography. Arch Ophthalmol. 1977;95(7):1245–54.

    Article  CAS  PubMed  Google Scholar 

  16. Tso MO, Hayreh SS. Optic disc edema in raised intracranial pressure. III. A pathologic study of experimental papilledema. Arch Ophthalmol. 1977;95(8):1448–57.

    Article  CAS  PubMed  Google Scholar 

  17. Hayreh SS. Optic disc edema in raised intracranial pressure. V. Pathogenesis. Arch Ophthalmol. 1977;95(9):1553–65.

    Article  CAS  PubMed  Google Scholar 

  18. Hayreh SS. Optic disc edema in raised intracranial pressure. VI. Associated visual disturbances and their pathogenesis. Arch Ophthalmol. 1977;95(9):1566–79.

    Article  CAS  PubMed  Google Scholar 

  19. Laemmer R, Heckmann JG, Mardin CY, Schwab S, Laemmer AB. Detection of nerve fiber atrophy in apparently effectively treated papilledema in idiopathic intracranial hypertension. Graefes Arch Clin Exp Ophthalmol. 2010;248(12):1787–93.

    Article  PubMed  Google Scholar 

  20. Zhang LF, Hargens AR. Intraocular/Intracranial pressure mismatch hypothesis for visual impairment syndrome in space. Aviat Space Environ Med. 2014;85(1):78–80.

    Article  PubMed  Google Scholar 

  21. Mader TH, Gibson CR, Pass AF, et al. Optic disc edema in an astronaut after repeat long-duration space flight. J Neuroophthalmol. 2013;33(3):249–55.

    Article  PubMed  Google Scholar 

  22. Mader TH, Gibson CR, Pass AF, et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology. 2011;118(10):2058–69.

    Article  PubMed  Google Scholar 

  23. Jonas JB, Wang N, Wang YX, et al. Incident retinal vein occlusions and estimated cerebrospinal fluid pressure. The Beijing Eye Study. Acta Ophthalmol. 2015;93(7):e522–6.

    Article  PubMed  Google Scholar 

  24. Mansouri K, Weinreb RN. Ambulatory 24-h intraocular pressure monitoring in the management of glaucoma. Curr Opin Ophthalmol. 2015;26(3):214–20.

    Article  PubMed  Google Scholar 

  25. Kawoos U, McCarron RM, Auker CR, Chavko M. Advances in intracranial pressure monitoring and its significance in managing traumatic brain injury. Int J Mol Sci. 2015;16(12):28979–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lenfeldt N, Koskinen LO, Bergenheim AT, Malm J, Eklund A. CSF pressure assessed by lumbar puncture agrees with intracranial pressure. Neurology. 2007;68(2):155–8.

    Article  CAS  PubMed  Google Scholar 

  27. Zhong J, Dujovny M, Park HK, Perez E, Perlin AR, Diaz FG. Advances in ICP monitoring techniques. Neurol Res. 2003;25(4):339–50.

    Article  PubMed  Google Scholar 

  28. Bhatia A, Gupta AK. Neuromonitoring in the intensive care unit. I. Intracranial pressure and cerebral blood flow monitoring. Intensive Care Med. 2007;33(7):1263–71.

    Article  PubMed  Google Scholar 

  29. Guillaume J, Janny P. Continuous intracranial manometry; importance of the method and first results. Rev Neurol (Paris). 1951;84(2):131–42.

    CAS  Google Scholar 

  30. Kakarla UK, Kim LJ, Chang SW, Theodore N, Spetzler RF. Safety and accuracy of bedside external ventricular drain placement. Neurosurgery. 2008;63(1 Suppl 1):ONS162–6; discussion ONS166–167.

    PubMed  Google Scholar 

  31. Park YG, Woo HJ, Kim E, Park J. Accuracy and safety of bedside external ventricular drain placement at two different cranial sites : Kocher’s point versus forehead. J Korean Neurosurg Soc. 2011;50(4):317–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Woernle CM, Burkhardt JK, Bellut D, Krayenbuehl N, Bertalanffy H. Do iatrogenic factors bias the placement of external ventricular catheters?—a single institute experience and review of the literature. Neurol Med Chir (Tokyo). 2011;51(3):180–6.

    Article  Google Scholar 

  33. Patil V, Gupta R, San Jose Estepar R, et al. Smart stylet: the development and use of a bedside external ventricular drain image-guidance system. Stereotact Funct Neurosurg. 2015;93(1):50–8.

    Article  PubMed  Google Scholar 

  34. Sarrafzadeh A, Smoll N, Schaller K. Guided (VENTRI-GUIDE) versus freehand ventriculostomy: study protocol for a randomized controlled trial. Trials. 2014;15:478.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Munch E, Weigel R, Schmiedek P, Schurer L. The Camino intracranial pressure device in clinical practice: reliability, handling characteristics and complications. Acta Neurochir. 1998;140(11):1113–9; discussion 1119–1120.

    Article  CAS  PubMed  Google Scholar 

  36. Chambers KR, Kane PJ, Choksey MS, Mendelow AD. An evaluation of the camino ventricular bolt system in clinical practice. Neurosurgery. 1993;33(5):866–8.

    CAS  PubMed  Google Scholar 

  37. Bruder N, N’Zoghe P, Graziani N, Pelissier D, Grisoli F, Francois G. A comparison of extradural and intraparenchymatous intracranial pressures in head injured patients. Intensive Care Med. 1995;21(10):850–2.

    Article  CAS  PubMed  Google Scholar 

  38. Gelabert-Gonzalez M, Ginesta-Galan V, Sernamito-Garcia R, Allut AG, Bandin-Dieguez J, Rumbo RM. The Camino intracranial pressure device in clinical practice. Assessment in a 1000 cases. Acta Neurochir. 2006;148(4):435–41.

    Article  CAS  PubMed  Google Scholar 

  39. Piper IR, Miller JD. The evaluation of the wave-form analysis capability of a new strain-gauge intracranial pressure MicroSensor. Neurosurgery. 1995;36(6):1142–4; discussion 1144–1145.

    Article  CAS  PubMed  Google Scholar 

  40. Citerio G, Piper I, Cormio M, et al. Bench test assessment of the new Raumedic Neurovent-P ICP sensor: a technical report by the BrainIT group. Acta Neurochir. 2004;146(11):1221–6.

    Article  CAS  PubMed  Google Scholar 

  41. Allin D, Czosnyka M, Czosnyka Z. Laboratory testing of the Pressio intracranial pressure monitor. Neurosurgery. 2008;62(5):1158–61; discussion 1161.

    Article  PubMed  Google Scholar 

  42. Lang JM, Beck J, Zimmermann M, Seifert V, Raabe A. Clinical evaluation of intraparenchymal Spiegelberg pressure sensor. Neurosurgery. 2003;52(6):1455–9; discussion 1459

    Article  PubMed  Google Scholar 

  43. Ghajar J. Intracranial pressure monitoring techniques. New Horiz. 1995;3(3):395–9.

    CAS  PubMed  Google Scholar 

  44. Raabe A, Totzauer R, Meyer O, Stockel R, Hohrein D, Schoche J. Reliability of epidural pressure measurement in clinical practice: behavior of three modern sensors during simultaneous ipsilateral intraventricular or intraparenchymal pressure measurement. Neurosurgery. 1998;43(2):306–11.

    Article  CAS  PubMed  Google Scholar 

  45. Miller JD, Bobo H, Kapp JP. Inaccurate pressure readings for subarachnoid bolts. Neurosurgery. 1986;19(2):253–5.

    Article  CAS  PubMed  Google Scholar 

  46. Raboel PH, Bartek J Jr, Andresen M, Bellander BM, Romner B. Intracranial pressure monitoring: invasive versus non-invasive methods-a review. Crit Care Res Prac. 2012;2012:950393.

    CAS  Google Scholar 

  47. Eide PK. Comparison of simultaneous continuous intracranial pressure (ICP) signals from ICP sensors placed within the brain parenchyma and the epidural space. Med Eng Phys. 2008;30(1):34–40.

    Article  PubMed  Google Scholar 

  48. Guyot LL, Dowling C, Diaz FG, Michael DB. Cerebral monitoring devices: analysis of complications. Acta Neurochir Suppl. 1998;71:47–9.

    CAS  PubMed  Google Scholar 

  49. Martinez-Manas RM, Santamarta D, de Campos JM, Ferrer E. Camino intracranial pressure monitor: prospective study of accuracy and complications. J Neurol Neurosurg Psychiatry. 2000;69(1):82–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brain Trauma F, American Association of Neurological S, Congress of Neurological S, et al. Guidelines for the management of severe traumatic brain injury. VII. Intracranial pressure monitoring technology. J Neurotrauma. 2007;24(Suppl 1):S45–54.

    Google Scholar 

  51. Steiner LA, Andrews PJ. Monitoring the injured brain: ICP and CBF. Br J Anaesth. 2006;97(1):26–38.

    Article  CAS  PubMed  Google Scholar 

  52. Behrens A, Lenfeldt N, Qvarlander S, Koskinen LO, Malm J, Eklund A. Are intracranial pressure wave amplitudes measurable through lumbar puncture? Acta Neurol Scand. 2013;127(4):233–41.

    Article  CAS  PubMed  Google Scholar 

  53. Colledge NR, Walker BR, Ralston SH, editors. Davidson’s principles and practice of medicine. 21st ed. Edinburgh: Churchill Livingstone/Elsevier; 2010. p. 1147–8. ISBN 978-0-7020-3084-0.

    Google Scholar 

  54. March K. Intracranial pressure monitoring: why monitor? AACN Clin Issues. 2005;16(4):456–75.

    Article  PubMed  Google Scholar 

  55. Hanlo P, Peters R, Gooskens R, et al. Monitoring intracranial dynamics by transcranial Doppler—a new Doppler index: trans systolic time. Ultrasound Med Biol. 1995;21(5):613–21.

    Article  CAS  PubMed  Google Scholar 

  56. Popovic D, Khoo M, Lee S. Noninvasive monitoring of intracranial pressure. Recent Patents on Biomedical Engineering. 2009;2(3):165–79.

    Article  Google Scholar 

  57. Petkus V, Ragauskas A, Jurkonis R. Investigation of intracranial media ultrasonic monitoring model. Ultrasonics. 2002;40(1):829–33.

    Article  PubMed  Google Scholar 

  58. Ragauskas A, Daubaris G, Ragaisis V, Petkus V. Implementation of non-invasive brain physiological monitoring concepts. Med Eng Phys. 2003;25(8):667–78.

    Article  PubMed  Google Scholar 

  59. Ragauskas A DG, Inventor. Method and apparatus for non-invasively deriving and indicating of dynamic characteristics of the human and animal intracranial media. US patent 5,388,5831995.

    Google Scholar 

  60. Buhre W, Heinzel F, Grund S, Sonntag H, Weyland A. Extrapolation to zero-flow pressure in cerebral arteries to estimate intracranial pressure. Br J Anaesth. 2003;90(3):291–5.

    Article  CAS  PubMed  Google Scholar 

  61. Ursino M, Ter Minassian A, Lodi C, Beydon L. Cerebral hemodynamics during arterial and CO2 pressure changes: in vivo prediction by a mathematical model. Am J Phys Heart Circ Phys. 2000;279(5):H2439–55.

    CAS  Google Scholar 

  62. Miao J, Benkeser PJ, Nichols FT. A computer-based statistical pattern recognition for doppler spectral waveforms of intracranial blood flow. Comput Biol Med. 1996;26(1):53–63.

    Article  CAS  PubMed  Google Scholar 

  63. Cardim D, Robba C, Bohdanowicz M, et al. Non-invasive monitoring of intracranial pressure using transcranial doppler ultrasonography: is it possible? Neurocrit Care. 2016;25(3):473–91.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Maeda H, Matsumoto M, Handa N, et al. Reactivity of cerebral blood flow to carbon dioxide in various types of ischemic cerebrovascular disease: evaluation by the transcranial doppler method. Stroke. 1993;24(5):670–5.

    Article  CAS  PubMed  Google Scholar 

  65. Yost WT, Cantrell JH, Kushnick PW. Fundamental aspects of pulse phase-locked loop technology-based methods for measurement of ultrasonic velocity. J Acoust Soc Am. 1992;91(3):1456–68.

    Article  CAS  PubMed  Google Scholar 

  66. Ueno T, Macias BR, Yost WT, Hargens AR. Noninvasive assessment of intracranial pressure waveforms by using pulsed phase lock loop technology. Technical note. J Neurosurg. 2005;103(2):361–7.

    Article  PubMed  Google Scholar 

  67. Ueno T, Macias BR, Yost WT, Hargens AR. Pulsed phase lock loop device for monitoring intracranial pressure during space flight. J Gravit Physiol. 2003;10:117–8.

    Google Scholar 

  68. Chen H, Wang J, Mao S, Dong W, Yang H. A new method of intracranial pressure monitoring by EEG power spectrum analysis. Can J Neurol Sci. 2012;39(04):483–7.

    Article  PubMed  Google Scholar 

  69. Ghosh A, Elwell C, Smith M. Cerebral near-infrared spectroscopy in adults: a work in progress. Anesth Analg. 2012;115(6):1373–83.

    Article  CAS  PubMed  Google Scholar 

  70. Kampfl A, Pfausler B, Denchev D, Jaring H, Schmutzhard E. Near infrared spectroscopy (NIRS) in patients with severe brain injury and elevated intracranial pressure. Acta Neurochir Suppl. 1997;70:112–4.

    CAS  PubMed  Google Scholar 

  71. Weerakkody RA, Czosnyka M, Zweifel C, et al. Near infrared spectroscopy as possible non-invasive monitor of slow vasogenic ICP waves. Acta Neurochir Suppl. 2012;114:181–5.

    Article  PubMed  Google Scholar 

  72. Zweifel C, Castellani G, Czosnyka M, et al. Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage. Stroke. 2010;41(9):1963–8.

    Article  PubMed  Google Scholar 

  73. Kristiansson H, Nissborg E, Bartek J Jr, Andresen M, Reinstrup P, Romner B. Measuring elevated intracranial pressure through noninvasive methods: a review of the literature. J Neurosurg Anesthesiol. 2013;25(4):372–85.

    Article  PubMed  Google Scholar 

  74. Purin V. Measurement of intracranial pressure in children without puncture (new method). Pediatriia. 1964;43:82.

    CAS  PubMed  Google Scholar 

  75. Wealthall S, Smallwood R. Methods of measuring intracranial pressure via the fontanelle without puncture. J Neurol Neurosurg Psychiatry. 1974;37(1):88–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Singh D, Cronin DS. Investigation of cavitation using a modified Hopkinson apparatus. Dynam Behav Mat. 2015;1:177–83.

    Google Scholar 

  77. Swoboda M, Hochman MG, Fritz FJ, Inventor. Non-invasive intracranial pressure sensor. 2008.

    Google Scholar 

  78. Nichols WW, McDonald DA, O’Rourke MF. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. Abingdon: Taylor & Francis; 2005. p. 570.

    Google Scholar 

  79. Liu D, Kahn M. Measurement and relationship of subarachnoid pressure of the optic nerve to intracranial pressures in fresh cadavers. Am J Ophthalmol. 1993;116(5):548–56.

    Article  CAS  PubMed  Google Scholar 

  80. Geeraerts T, Duranteau J, Benhamou D. Ocular sonography in patients with raised intracranial pressure: the papilloedema revisited. Crit Care. 2008;12(3):150.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Gibby W, Cohen M, Goldberg H, Sergott R. Pseudotumor cerebri: CT findings and correlation with vision loss. AJR Am J Roentgenol. 1993;160(1):143–6.

    Article  CAS  PubMed  Google Scholar 

  82. Soldatos T, Karakitsos D, Chatzimichail K, Papathanasiou M, Gouliamos A, Karabinis A. Optic nerve sonography in the diagnostic evaluation of adult brain injury. Crit Care. 2008;12(3):1.

    Article  Google Scholar 

  83. Kimberly HH, Shah S, Marill K, Noble V. Correlation of optic nerve sheath diameter with direct measurement of intracranial pressure. Acad Emerg Med. 2008;15(2):201–4.

    Article  PubMed  Google Scholar 

  84. Rajajee V, Vanaman M, Fletcher JJ, Jacobs TL. Optic nerve ultrasound for the detection of raised intracranial pressure. Neurocrit Care. 2011;15(3):506–15.

    Article  PubMed  Google Scholar 

  85. Dubourg J, Javouhey E, Geeraerts T, Messerer M, Kassai B. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med. 2011;37(7):1059–68.

    Article  PubMed  Google Scholar 

  86. Steinborn M, Friedmann M, Makowski C, Hahn H, Hapfelmeier A, Juenger H. High resolution transbulbar sonography in children with suspicion of increased intracranial pressure. Childs Nerv Syst. 2016;32(4):655–60.

    Article  PubMed  Google Scholar 

  87. Weigel M, Lagreze WA, Lazzaro A, Hennig J, Bley TA. Fast and quantitative high-resolution magnetic resonance imaging of the optic nerve at 3.0 tesla. Investig Radiol. 2006;41(2):83–6.

    Article  Google Scholar 

  88. Xie X, Zhang X, Fu J, et al. Noninvasive intracranial pressure estimation by orbital subarachnoid space measurement: the Beijing Intracranial and Intraocular Pressure (iCOP) study. Crit Care. 2013;17(4):R162.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Geeraerts T, Newcombe VF, Coles JP, et al. Use of T2-weighted magnetic resonance imaging of the optic nerve sheath to detect raised intracranial pressure. Crit Care. 2008;12(5):R114.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Querfurth HW, Arms SW, Lichy CM, Irwin WT, Steiner T. Prediction of intracranial pressure from noninvasive transocular venous and arterial hemodynamic measurements: a pilot study. Neurocrit Care. 2004;1(2):183–94.

    Article  PubMed  Google Scholar 

  91. Querfurth HW, Lieberman P, Arms S, Mundell S, Bennett M, van Horne C. Ophthalmodynamometry for ICP prediction and pilot test on Mt. Everest. BMC Neurol. 2010;10:106.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Motschmann M, Muller C, Kuchenbecker J, et al. Ophthalmodynamometry: a reliable method for measuring intracranial pressure. Strabismus. 2001;9(1):13–6.

    Article  CAS  PubMed  Google Scholar 

  93. Firsching R, Schutze M, Motschmann M, Behrens-Baumann W. Venous opthalmodynamometry: a noninvasive method for assessment of intracranial pressure. J Neurosurg. 2000;93(1):33–6.

    Article  CAS  PubMed  Google Scholar 

  94. Querfurth HW, Arms SW, Lichy CM, Irwin WT, Steiner T. Prediction of intracranial pressure from noninvasive transocular venous and arterial hemodynamic measurements. Neurocrit Care. 2004;1(2):183–94.

    Article  PubMed  Google Scholar 

  95. Jonas JB, Pfeil K, Chatzikonstantinou A, Rensch F. Ophthalmodynamometric measurement of central retinal vein pressure as surrogate of intracranial pressure in idiopathic intracranial hypertension. Graefes Arch Clin Exp Ophthalmol. 2008;246(7):1059–60.

    Article  PubMed  Google Scholar 

  96. York DH, Pulliam MW, Rosenfeld JG, Watts C. Relationship between visual evoked potentials and intracranial pressure. J Neurosurg. 1981;55(6):909–16.

    Article  CAS  PubMed  Google Scholar 

  97. York D, Legan M, Benner S, Watts C. Further studies with a noninvasive method of intracranial pressure estimation. Neurosurgery. 1984;14(4):456–61.

    Article  CAS  PubMed  Google Scholar 

  98. Desch LW. Longitudinal stability of visual evoked potentials in children and adolescents with hydrocephalus. Dev Med Child Neurol. 2001;43(02):113–7.

    Article  CAS  PubMed  Google Scholar 

  99. Andersson L, Sjolund J, Nilsson J. Flash visual evoked potentials are unreliable as markers of ICP due to high variability in normal subjects. Acta Neurochir. 2012;154(1):121–7.

    Article  PubMed  Google Scholar 

  100. Echegaray S, Zamora G, Yu H, Luo W, Soliz P, Kardon R. Automated analysis of optic nerve images for detection and staging of papilledema. Invest Ophthalmol Vis Sci. 2011;52(10):7470–8.

    Article  PubMed  Google Scholar 

  101. Heckmann JG, Weber M, Junemann AG, Neundorfer B, Mardin CY. Laser scanning tomography of the optic nerve vs CSF opening pressure in idiopathic intracranial hypertension. Neurology. 2004;62(7):1221–3.

    Article  CAS  PubMed  Google Scholar 

  102. Rebolleda G, Munoz-Negrete FJ. Follow-up of mild papilledema in idiopathic intracranial hypertension with optical coherence tomography. Invest Ophthalmol Vis Sci. 2009;50(11):5197–200.

    Article  PubMed  Google Scholar 

  103. Group OCTS-SCfNIIHS, Auinger P, Durbin M, et al. Baseline OCT measurements in the idiopathic intracranial hypertension treatment trial, part I: quality control, comparisons, and variability. Invest Ophthalmol Vis Sci. 2014;55(12):8180–8.

    Article  Google Scholar 

  104. Group OCTS-SCfNIIHS, Auinger P, Durbin M, et al. Baseline OCT measurements in the idiopathic intracranial hypertension treatment trial, part II: correlations and relationship to clinical features. Invest Ophthalmol Vis Sci. 2014;55(12):8173–9.

    Article  Google Scholar 

  105. Optical Coherence Tomography Substudy C, Group NIIHS. Papilledema outcomes from the optical coherence tomography substudy of the idiopathic intracranial hypertension treatment trial. Ophthalmology. 2015;122(9):1939–1945.e1932.

    Article  Google Scholar 

  106. Kupersmith MJ, Sibony P, Mandel G, et al. Optical coherence tomography of the swollen optic nerve head: deformation of the peripapillary retinal pigment epithelium layer in papilledema. Invest Ophthalmol Vis Sci. 2011;52(9):6558.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Reid A, Marchbanks RJ, Burge DM, et al. The relationship between intracranial pressure and tympanic membrane displacement. Br J Audiol. 1990;24(2):123–9.

    Article  CAS  PubMed  Google Scholar 

  108. Samuel M, Burge DM, Marchbanks RJ. Quantitative assessment of intracranial pressure by the tympanic membrane displacement audiometric technique in children with shunted hydrocephalus. Eur J Pediatr Surg. 1998;8(4):200–7.

    Article  CAS  PubMed  Google Scholar 

  109. Gwer S, Sheward V, Birch A, et al. The tympanic membrane displacement analyser for monitoring intracranial pressure in children. Childs Nerv Syst. 2013;29(6):927–33.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Silverman CA, Linstrom CJ. How to measure cerebrospinal fluid pressure invasively and noninvasively. J Glaucoma. 2013;22(Suppl 5):S26–8.

    Article  PubMed  Google Scholar 

  111. Yavin D, Luu J, James MT, et al. Diagnostic accuracy of intraocular pressure measurement for the detection of raised intracranial pressure: meta-analysis: a systematic review. J Neurosurg. 2014;121(3):680–7.

    Article  PubMed  Google Scholar 

  112. Lashutka MK, Chandra A, Murray HN, Phillips GS, Hiestand BC. The relationship of intraocular pressure to intracranial pressure. Ann Emerg Med. 2004;43(5):585–91.

    Article  PubMed  Google Scholar 

  113. Sheeran P, Bland JM, Hall GM. Intraocular pressure changes and alterations in intracranial pressure. Lancet. 2000;355(9207):899.

    Article  CAS  PubMed  Google Scholar 

  114. Han Y, McCulley TJ, Horton JC. No correlation between intraocular pressure and intracranial pressure. Ann Neurol. 2008;64(2):221–4.

    Article  PubMed  Google Scholar 

  115. Czarnik T, Gawda R, Latka D, Kolodziej W, Sznajd-Weron K, Weron R. Noninvasive measurement of intracranial pressure: is it possible? J Trauma. 2007;62(1):207–11.

    Article  PubMed  Google Scholar 

  116. Li Z, Yang Y, Lu Y, et al. Intraocular pressure vs intracranial pressure in disease conditions: a prospective cohort study (Beijing iCOP study). BMC Neurol. 2012;12:66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jonas JB, Wang N, Wang YX, et al. Body height, estimated cerebrospinal fluid pressure and open-angle glaucoma. The beijing eye study. PLoS One. 2011;9(1):e86678.

    Article  CAS  Google Scholar 

  118. Jonas JB, Nangia V, Wang N, et al. Trans-lamina cribrosa pressure difference and open-angle glaucoma. The central India eye and medical study. PLoS One. 2013;8(12):e82284.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Asrani S, Samuels B, Thakur M, Santiago C, Kuchibhatla M. Clinical profiles of primary open angle glaucoma versus normal tension glaucoma patients: a pilot study. Curr Eye Res. 2011;36(5):429–35.

    Article  PubMed  Google Scholar 

  120. Melki S, Todani A, Cherfan G. An implantable intraocular pressure transducer: initial safety outcomes. JAMA Ophthalmol. 2014;132(10):1221–5.

    Article  PubMed  Google Scholar 

  121. Koutsonas A, Walter P, Roessler G, Plange N. Implantation of a novel telemetric intraocular pressure sensor in patients with glaucoma (ARGOS study): 1-year results. Invest Ophthalmol Vis Sci. 2015;56(2):1063–9.

    Article  PubMed  Google Scholar 

  122. Koskinen LO, Olivecrona M. Clinical experience with the intraparenchymal intracranial pressure monitoring Codman MicroSensor system. Neurosurgery. 2005;56(4):693–8; discussion 693–698.

    Article  PubMed  Google Scholar 

  123. Jetzki S, Weinzierl M, Krause I, et al. A multisensor implant for continuous monitoring of intracranial pressure dynamics. IEEE Trans Biomed Circuits Syst. 2012;6(4):356–65.

    Article  PubMed  Google Scholar 

  124. Schmitt M, Eymann R, Antes S, Kiefer M. Subdural or intraparenchymal placement of long-term telemetric intracranial pressure measurement devices? Acta Neurochir Suppl. 2012;113:109–13.

    Article  PubMed  Google Scholar 

  125. Orakcioglu B, Beynon C, Kentar MM, Eymann R, Kiefer M, Sakowitz OW. Intracranial pressure telemetry: first experience of an experimental in vivo study using a new device. Acta Neurochir Suppl. 2012;114:105–10.

    Article  PubMed  Google Scholar 

  126. Liu JH, Kripke DF, Hoffman RE, et al. Nocturnal elevation of intraocular pressure in young adults. Invest Ophthalmol Vis Sci. 1998;39(13):2707–12.

    CAS  PubMed  Google Scholar 

  127. Liu JH, Kripke DF, Twa MD, et al. Twenty-four-hour pattern of intraocular pressure in the aging population. Invest Ophthalmol Vis Sci. 1999;40(12):2912–7.

    CAS  PubMed  Google Scholar 

  128. Hao J, Zhen Y, Wang H, Yang D, Wang N. The effect of lateral decubitus position on nocturnal intraocular pressure over a habitual 24-hour period in healthy adults. PLoS One. 2014;9(11):e113590.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Wang NL, Hao J, Zhen Y, et al. A population-based investigation of circadian rhythm of intraocular pressure in habitual position among healthy subjects: the handan eye study. J Glaucoma. 2016;25(7):584–9.

    Article  PubMed  Google Scholar 

  130. Tsukahara S, Sasaki T. Postural change of IOP in normal persons and in patients with primary wide open-angle glaucoma and low-tension glaucoma. Br J Ophthalmol. 1984;68(6):389–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Renard E, Palombi K, Gronfier C, et al. Twenty-four hour (Nyctohemeral) rhythm of intraocular pressure and ocular perfusion pressure in normal-tension glaucoma. Invest Ophthalmol Vis Sci. 2010;51(2):882–9.

    Article  PubMed  Google Scholar 

  132. Lee YR, Kook MS, Joe SG, et al. Circadian (24-hour) pattern of intraocular pressure and visual field damage in eyes with normal-tension glaucoma. Invest Ophthalmol Vis Sci. 2012;53(2):881–7.

    Article  PubMed  Google Scholar 

  133. Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363(9422):1711–20.

    Article  PubMed  Google Scholar 

  134. Wostyn P, De Groot V, Audenaert K, De Deyn PP. Are intracranial pressure fluctuations important in glaucoma? Med Hypotheses. 2011;77(4):598–600.

    Article  PubMed  Google Scholar 

  135. Wang N, Xie X, Yang D, et al. Orbital cerebrospinal fluid space in glaucoma: the Beijing intracranial and intraocular pressure (iCOP) study. Ophthalmology. 2012;119(10):2065–2073.e2061.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Ning Tian for drawing diagrams for this chapter. Ning Tian, designer at Beijing Tianming Ophthalmological Novel Technology Development Corporation, 17 Hougou Lane, Chongwenmen, Beijing, 100005, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningli Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xie, X., Peszel, A., Rizeq, F.K., Sun, C., Yang, D., Wang, N. (2019). Techniques in Measuring Intraocular and Intracranial Pressure Gradients. In: Wang, N. (eds) Intraocular and Intracranial Pressure Gradient in Glaucoma. Advances in Visual Science and Eye Diseases, vol 1. Springer, Singapore. https://doi.org/10.1007/978-981-13-2137-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2137-5_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2136-8

  • Online ISBN: 978-981-13-2137-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics