Skip to main content

Domain Regularized Subspace Projection Method

  • Chapter
  • First Online:
Electronic Nose: Algorithmic Challenges
  • 615 Accesses

Abstract

This chapter addresses the time-varying drift with characteristics of uncertainty and unpredictability. Considering that drifted data is with different probability distribution from the regular data, we propose a machine learning-based subspace projection approach to project the data onto a new common subspace so that two clusters have similar distribution. Then drift can be automatically removed or reduced in the new common subspace. The merits are threefold: (1) the proposed subspace projection is unsupervised, without using any data label information; (2) a simple but effective domain distance is proposed to represent the mean distribution discrepancy metric; (3) the proposed anti-drift method can be easily solved by Eigen decomposition, and anti-drift is manifested with a well-solved projection matrix in real application. Experiments on synthetic data and real datasets demonstrate the effectiveness and efficiency of the proposed anti-drift method in comparison to state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Zhang, F. Tian, S. Liu, L. Dang, X. Peng, X. Yin, Chaotic time series prediction of e-nose sensor drift in embedded phase space. Sens. Actuators B Chem. 182, 71–79 (2013)

    Article  Google Scholar 

  2. F. Hossein-Babaei, V. Ghafarinia, Compensation for the drift-like terms caused by environmental fluctuations in the response of chemoresistive gas sensors. Sens. Actuators B Chem. 143, 641–648 (2010)

    Article  Google Scholar 

  3. E. Martinelli, G. Magna, S. De Vito, R. Di Fuccio, G. Di Francia, A. Vergara, C. Di Natale, An adaptive classification model based on the artificial immune system for chemical sensor drift mitigation. Sens. Actuators B Chem. 177, 1017–1026 (2013)

    Article  Google Scholar 

  4. A. Vergara, S. Vembu, T. Ayhan, M.A. Ryan, M.L. Homer, R. Huerta, Chemical gas sensor drift compensation using classifier ensembles. Sens. Actuators B Chem. 167, 320–329 (2012)

    Article  Google Scholar 

  5. H. Liu, Z. Tang, Metal oxide gas sensor drift compensation using a dynamic classifier ensemble based on fitting. Sensors 13, 9160–9173 (2013)

    Article  Google Scholar 

  6. L. Zhang, D. Zhang, Domain adaptation extreme learning machines for drift compensation in E-nose systems. IEEE Trans. Instrum. Meas. 64(7), 1790–1801 (2015)

    Article  Google Scholar 

  7. Q. Liu, M. Ye, S.S. Ge, X. Du, Drift compensation for electronic nose by semi-supervised domain adaption. IEEE Sens. J. 14(3), 657–665 (2014)

    Article  Google Scholar 

  8. T. Artursson, T. Eklov, I. Lundstrom, P. Martensson, M. Sjostrom, M. Holmberg, Drift correction for gas sensors using multivariate methods. J. Chemometr. 14(5–6), 711–723 (2000)

    Article  Google Scholar 

  9. M. Padilla, A. Perera, I. Montoliu, A. Chaudry, K. Persaud, S. Marco, Drift compensation of gas sensor array data by orthogonal signal correction. Chemometr. Intell. Lab. Syst. 100, 28–35 (2010)

    Article  Google Scholar 

  10. S. Di Carlo, M. Falasconi, E. Sanchez, A. Scionti, G. Squillero, A. Tonda, Increasing pattern recognition accuracy for chemical sensing by evolutionary based drift compensation. Pattern Recogn. Lett. 32, 1594–1603 (2011)

    Article  Google Scholar 

  11. A. Ziyatdinov, S. Marco, A. Chaudry, K. Persaud, P. Caminal, A. Perera, Drift compensation of gas sensor array data by common principal component analysis. Sens. Actuators B Chem. 146(2), 460–465 (2010)

    Article  Google Scholar 

  12. M. Turk, A. Pentland, Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  13. P.N. Belhumeur, J. Hespanha, D.J. Kriegman, Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  14. X. He, S. Yan, Y. Hu, P. Niyogi, H.J. Zhang, Face recognition using laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)

    Article  Google Scholar 

  15. S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, S. Lin, Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Analysis Mach. Intell. 29(1), 40–51 (2007)

    Article  Google Scholar 

  16. S. Yan, J. Liu, X. Tang, T. Huang, A parameter-free framework for general supervised subspace learning. IEEE Trans. Inf. Forensics Secur. 2(1), 69–76 (2007)

    Article  Google Scholar 

  17. S. Yan, D. Xu, Q. Yang, L. Zhang, X. Tang, H. Zhang, Multilinear discriminant analysis for face recognition. IEEE Trans. Image Proc. 16(1), 212–220 (2007)

    Article  MathSciNet  Google Scholar 

  18. L. Fernandez, S. Guney, A. Gutiérrez-Gálvez, S. Marco, Calibration transfer in temperature modulated gas sensor arrays. Sens. Actuators B Chem. 231, 276–284 (2016)

    Article  Google Scholar 

  19. J. Fonollosa, L. Fernández, A. Gutiérrez, R. Huerta, S. Marco, Calibration transfer and drift counteraction in chemical sensor arrays using direct standardization. Sens. Actuators B Chem. 236, 1044–1053 (2016)

    Article  Google Scholar 

  20. L. Zhang, F. Tian, C. Kadri, B. Xiao, H. Li, L. Pan, H. Zhou, On-line sensor calibration transfer among electronic nose instruments for monitoring volatile organic chemicals in indoor air quality. Sens. Actua. B 160(1), 899–909 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, L., Tian, F., Zhang, D. (2018). Domain Regularized Subspace Projection Method. In: Electronic Nose: Algorithmic Challenges. Springer, Singapore. https://doi.org/10.1007/978-981-13-2167-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2167-2_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2166-5

  • Online ISBN: 978-981-13-2167-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics