Skip to main content

Wilson Loop Form Factors: A New Duality

  • Conference paper
  • First Online:
Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 2 (LT-XII/QTS-X 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 255))

Included in the following conference series:

  • 616 Accesses

Abstract

We find a new duality for form factors of lightlike Wilson loops in planar \(\mathcal N=4\) super-Yang-Mills theory. The duality maps a form factor involving an n-sided lightlike polygonal super-Wilson loop together with m external on-shell states, to the same type of object but with the edges of the Wilson loop and the external states swapping roles. This relation can essentially be seen graphically in Lorentz harmonic chiral (LHC) superspace where it is equivalent to planar graph duality. However there are some crucial subtleties with the cancellation of spurious poles due to the gauge fixing. They are resolved by finding the correct formulation of the Wilson loop and by careful analytic continuation from Minkowski to Euclidean space. We illustrate all of these subtleties explicitly in the simplest non-trivial NMHV-like case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use two-component spinor notation for vectors, e.g., \(x^{{\dot{\alpha }}\alpha } =(\sigma _\mu )^{{\dot{\alpha }}\alpha } x^\mu \). The Lorentz and R symmetry indices take values \(\alpha =1,2\), \({\dot{\alpha }}=1,2\) and \(A=1,2,3,4\), respectively.

  2. 2.

    This does not follow from chiral supersymmetry (32) and it would be interesting to understand the symmetry leading to such a structure.

  3. 3.

    Notice that the divergent part of the Wilson loop form factor automatically satisfies the duality relation (15). Namely, the IR divergencies of \(W_{n,m}\) match the UV divergences of \(W_{m,n}\) and vice versa.

  4. 4.

    We cannot fully justify applicability of the Fourier transform in Euclidean space until we have checked for integrand level cancellation of spurious poles, but we assume this here.

References

  1. L. F. Alday and J. M. Maldacena, “Gluon scattering amplitudes at strong coupling,” JHEP 0706 (2007) 064 arXiv:0705.0303 [hep-th].

    Article  MathSciNet  Google Scholar 

  2. J. M. Drummond, G. P. Korchemsky and E. Sokatchev, “Conformal properties of four-gluon planar amplitudes and Wilson loops,” Nucl. Phys. B 795 (2008) 385 arXiv:0707.0243 [hep-th].

    Article  MathSciNet  Google Scholar 

  3. A. Brandhuber, P. Heslop and G. Travaglini, Nucl. Phys. B 794 (2008) 231 https://doi.org/10.1016/j.nuclphysb.2007.11.002, arXiv:0707.1153 [hep-th].

    Article  MathSciNet  Google Scholar 

  4. S. Caron-Huot, “Notes on the scattering amplitude / Wilson loop duality,” JHEP 1107 (2011) 058 arXiv:1010.1167 [hep-th].

  5. L. J. Mason and D. Skinner, “The Complete Planar S-matrix of N\(=\)4 SYM as a Wilson Loop in Twistor Space,” JHEP 1012 (2010) 018 arXiv:1009.2225 [hep-th].

  6. A. V. Belitsky, G. P. Korchemsky and E. Sokatchev, “Are scattering amplitudes dual to super Wilson loops?,” Nucl. Phys. B 855 (2012) 333 arXiv:1103.3008 [hep-th].

    Article  MathSciNet  Google Scholar 

  7. L. F. Alday, B. Eden, G. P. Korchemsky, J. Maldacena and E. Sokatchev, “From correlation functions to Wilson loops,” JHEP 1109 (2011) 123 arXiv:1007.3243 [hep-th].

  8. B. Eden, G. P. Korchemsky and E. Sokatchev, “From correlation functions to scattering amplitudes,” JHEP 1112 (2011) 002 arXiv:1007.3246 [hep-th].

  9. B. Eden, P. Heslop, G. P. Korchemsky and E. Sokatchev, “The super-correlator/super-amplitude duality: Part I,” Nucl. Phys. B 869 (2013) 329 arXiv:1103.3714 [hep-th].

    Article  MathSciNet  Google Scholar 

  10. B. Eden, P. Heslop, G. P. Korchemsky and E. Sokatchev, “The super-correlator/super-amplitude duality: Part II,” Nucl. Phys. B 869 (2013) 378 arXiv:1103.4353 [hep-th].

    Article  MathSciNet  Google Scholar 

  11. T. Adamo, M. Bullimore, L. Mason and D. Skinner, “A Proof of the Supersymmetric Correlation Function / Wilson Loop Correspondence,” JHEP 1108 (2011) 076 arXiv:1103.4119 [hep-th].

  12. A. Brandhuber, B. Spence, G. Travaglini and G. Yang, “Form Factors in N\(=\)4 Super Yang-Mills and Periodic Wilson Loops,” JHEP 1101 (2011) 134 arXiv:1011.1899 [hep-th].

  13. A. Brandhuber, O. Gurdogan, R. Mooney, G. Travaglini and G. Yang, “Harmony of Super Form Factors,” JHEP 1110 (2011) 046 arXiv:1107.5067 [hep-th].

  14. O. T. Engelund and R. Roiban, “Correlation functions of local composite operators from generalized unitarity,” JHEP 1303 (2013) 172 arXiv:1209.0227 [hep-th].

  15. L. Koster, V. Mitev, M. Staudacher and M. Wilhelm, “All tree-level MHV form factors in \( \cal{N}\) = 4 SYM from twistor space,” JHEP 1606 (2016) 162 arXiv:1604.00012 [hep-th].

  16. L. Koster, V. Mitev, M. Staudacher and M. Wilhelm, “On Form Factors and Correlation Functions in Twistor Space,” arXiv:1611.08599 [hep-th].

  17. L. V. Bork and A. I. Onishchenko, “Grassmannians and form factors with \(q^2=0\) in N\(=\)4 SYM theory,” arXiv:1607.00503 [hep-th].

  18. L. V. Bork and A. I. Onishchenko, “Wilson lines, Grassmannians and Gauge Invariant Off-shell Amplitudes in N\(=\)4 SYM,” arXiv:1607.02320 [hep-th].

  19. S. É. Derkachov, G. P. Korchemsky and A. N. Manashov, “Dual conformal symmetry on the light-cone,” Nucl. Phys. B 886 (2014) 1102 arXiv:1306.5951 [hep-th].

    Article  MathSciNet  Google Scholar 

  20. S. Caron-Huot, unpublished notes.

    Google Scholar 

  21. J. P. Harnad and S. Shnider, “Constraints And Field Equations For Ten-dimensional Superyang-mills Theory,” Commun. Math. Phys. 106 (1986) 183.

    Article  MathSciNet  Google Scholar 

  22. H. Ooguri, J. Rahmfeld, H. Robins and J. Tannenhauser, “Holography in superspace,” JHEP 0007 (2000) 045 [hep-th/0007104].

    Article  MathSciNet  Google Scholar 

  23. D. Chicherin and E. Sokatchev, “N\(=\)4 super-Yang-Mills in LHC superspace. Part I: Classical and quantum theory,” arXiv:1601.06803 [hep-th].

  24. L. J. Mason, “Twistor actions for non-self-dual fields: A Derivation of twistor-string theory,” JHEP 0510 (2005) 009 [hep-th/0507269].

    Google Scholar 

  25. R. Boels, L. J. Mason and D. Skinner, “Supersymmetric Gauge Theories in Twistor Space,” JHEP 0702 (2007) 014 [hep-th/0604040].

    Google Scholar 

  26. A. A. Rosly and K. G. Selivanov, “On amplitudes in selfdual sector of Yang-Mills theory,” Phys. Lett. B 399 (1997) 135 [hep-th/9611101].

    Google Scholar 

  27. M. Bullimore, L. J. Mason and D. Skinner, “MHV Diagrams in Momentum Twistor Space,” JHEP 1012 (2010) 032 arXiv:1009.1854 [hep-th].

  28. D. Chicherin, R. Doobary, B. Eden, P. Heslop, G. P. Korchemsky, L. Mason and E. Sokatchev, “Correlation functions of the chiral stress-tensor multiplet in \({\cal{N}}=4\) SYM,” JHEP 1506 (2015) 198 arXiv:1412.8718 [hep-th].

  29. D. Chicherin and E. Sokatchev, “N\(=\)4 super-Yang-Mills in LHC superspace. Part II: Non-chiral correlation functions of the stress-tensor multiplet,” arXiv:1601.06804 [hep-th].

  30. D. Chicherin and E. Sokatchev, “Composite operators and form factors in N\(=\)4 SYM,” arXiv:1605.01386 [hep-th].

  31. J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, “Dual superconformal symmetry of scattering amplitudes in N\(=\)4 super-Yang-Mills theory,” Nucl. Phys. B 828 (2010) 317 arXiv:0807.1095 [hep-th].

  32. M. F. Sohnius, “Bianchi Identities for Supersymmetric Gauge Theories,” Nucl. Phys. B 136 (1978) 461.

    Article  MathSciNet  Google Scholar 

  33. E. Sokatchev, “An Action for N\(=\)4 supersymmetric selfdual Yang-Mills theory,” Phys. Rev. D 53 (1996) 2062 [hep-th/9509099].

    Article  MathSciNet  Google Scholar 

  34. B. M. Zupnik, “The Action of the Supersymmetric \({\cal{N}}\)\(=2\) Gauge Theory in Harmonic Superspace,” Phys. Lett. B 183 (1987) 175.

    Google Scholar 

  35. N. Berkovits and J. Maldacena, “Fermionic T-Duality, Dual Superconformal Symmetry, and the Amplitude/Wilson Loop Connection,” JHEP 0809 (2008) 062 arXiv:0807.3196 [hep-th].

    Article  MathSciNet  Google Scholar 

  36. N. Beisert, R. Ricci, A. A. Tseytlin and M. Wolf, “Dual Superconformal Symmetry from AdS(5) x S**5 Superstring Integrability,” Phys. Rev. D 78 (2008) 126004 arXiv:0807.3228 [hep-th].

  37. J. M. Drummond, J. M. Henn and J. Plefka, “Yangian symmetry of scattering amplitudes in N\(=\)4 super Yang-Mills theory,” JHEP 0905 (2009) 046 arXiv:0902.2987 [hep-th].

  38. A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, “Unconstrained N\(=\)2 Matter, Yang-Mills and Supergravity Theories in Harmonic Superspace,” Class. Quant. Grav. 1 (1984) 469 Erratum: [Class. Quant. Grav. 2 (1985) 127].

    Google Scholar 

  39. R. S. Ward, “On Selfdual gauge fields,” Phys. Lett. A 61 (1977) 81.

    Article  MathSciNet  Google Scholar 

  40. A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky and E. Sokatchev, “Gauge Field Geometry From Complex and Harmonic Analyticities. Kahler and Selfdual Yang-Mills Cases,” Annals Phys. 185 (1988) 1.

    Article  MathSciNet  Google Scholar 

  41. C. Lovelace, “Twistors versus harmonics,” arXiv:1006.4289 [hep-th].

  42. M. Bullimore and D. Skinner, “Holomorphic Linking, Loop Equations and Scattering Amplitudes in Twistor Space,” arXiv:1101.1329 [hep-th].

  43. F. Cachazo, P. Svrcek and E. Witten, “MHV vertices and tree amplitudes in gauge theory,” JHEP 0409 (2004) 006 [hep-th/0403047].

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We profited from numerous discussions with Simon Caron-Huot and Ömer Gürdoğan. G.K. would like to thank Ömer Gürdoğan for collaboration at the early stage of this project. We acknowledge partial support by the French National Agency for Research (ANR) under contract StrongInt (BLANC-SIMI-4-2011). The work of D.C. has been partially supported by the RFBR grant 14-01-00341. The work of P.H. has been partially supported by an STFC Consolidated Grant ST/L000407/1. P.H. would also like to thank the CNRS for financial support and LAPTh for hospitality where part of this work was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emery Sokatchev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chicherin, D., Heslop, P., Korchemsky, G.P., Sokatchev, E. (2018). Wilson Loop Form Factors: A New Duality. In: Dobrev, V. (eds) Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 2. LT-XII/QTS-X 2017. Springer Proceedings in Mathematics & Statistics, vol 255. Springer, Singapore. https://doi.org/10.1007/978-981-13-2179-5_8

Download citation

Publish with us

Policies and ethics