Skip to main content

Numerical Methods to Estimate Biomass Calorific Values via Biomass Characteristics Index

  • Chapter
  • First Online:
Green Technologies for the Oil Palm Industry

Part of the book series: Green Energy and Technology ((GREEN))

  • 484 Accesses

Abstract

The oil palm industry contributes a huge amount of valuable crude palm oil (CPO) as export commodity for Malaysia. It also produces a large quantity of biomass as plantation waste, which can be utilized as potential fuel sources. In order to shed light on the energy output estimation from the biomass, a comprehensive study on the physical properties of the biomass, i.e., bulk density and moisture content is crucial. A Biomass Characteristics Index (BCI) is proposed to represent the relationship between bulk density and moisture content . A numerical framework is developed to determine the BCI. This index is used to estimate the biomass bulk density and moisture content prior to the calorific value calculation. A regression graph is plotted to illustrate the relationship among those values with respect to different appearance or shapes of biomass. The result shows that the biomass of different sizes and shapes has its own specific BCI. The classification of biomass according to its specific BCI can be used to forecast the related bulk density and moisture content . Therefore, it reduces the hassle and time constraint to get those values through the conventional empirical method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fodor Z, Klemeš JJ (2012) Waste as alternative fuel—minimising emissions and effluents by advanced design. Process Saf Environ Protect 90(3):263–284. https://doi.org/10.1016/j.psep.2011.09.004

    Article  CAS  Google Scholar 

  2. IEA (2012) Future biomass-based transport fuels summary and conclusions from the workshop. Future biomass-based transport fuels summary and conclusions from the IEA bioenergy ExCo67 workshop

    Google Scholar 

  3. Goh SC, Lee TK (2010) Will biofuel projects in Southeast Asia become white elephants? Energy Policy 38(8):3847–3848. Elsevier. https://doi.org/10.1016/J.ENPOL.2010.04.009

    Article  Google Scholar 

  4. Ng WPQ, Lam HL, Ng FY, Kamal M, Lim JHE (2012) Waste-to-wealth: green potential from palm biomass in Malaysia. J Cleaner Product 34(Supplement C):57–65. https://doi.org/10.1016/j.jclepro.2012.04.004

    Article  Google Scholar 

  5. Everard CD, McDonnell KP, Fagan CC (2012) Prediction of biomass gross calorific values using visible and near infrared spectroscopy. Biomass Bioenergy 45(Supplement C):203–211. https://doi.org/10.1016/j.biombioe.2012.06.007

    Article  CAS  Google Scholar 

  6. Annevelink B, Anttila P, Väätäinen K, Gabrielle B, García-Galindo D, Leduc S, Staritsky I (2017). Modeling biomass logistics. In Modeling and optimization of biomass supply chains. Elsevier, pp 79–103. https://doi.org/10.1016/B978-0-12-812303-4.00004-5

    Chapter  Google Scholar 

  7. Wu MR, Schott DL, Lodewijks G (2011) Physical properties of solid biomass. Biomass Bioenergy 35(5):2093–2105. https://doi.org/10.1016/j.biombioe.2011.02.020

    Article  CAS  Google Scholar 

  8. Chiew YL, Iwata T, Shimada S (2011) System analysis for effective use of palm oil waste as energy resources. Biomass Bioenergy 35(7):2925–2935. https://doi.org/10.1016/j.biombioe.2011.03.027

    Article  Google Scholar 

  9. Elbersen W, Lammens TM, Alakangas EA, Annevelink B, Harmsen P, Elbersen B (2017) Lignocellulosic biomass quality. In Modeling and optimization of biomass supply chains. Elsevier, pp 55–78. https://doi.org/10.1016/B978-0-12-812303-4.00003-3

    Chapter  Google Scholar 

  10. Miccio F, Silvestri N, Barletta D, Poletto M (2011) Characterization of woody biomass flowability. Chem Eng Trans 24

    Google Scholar 

  11. Basu P (2013) Biomass characteristics. In Biomass gasification, pyrolysis and torrefaction. Elsevier, pp 47–86. https://doi.org/10.1016/B978-0-12-396488-5.00003-4

    Chapter  Google Scholar 

  12. Druilhe C, Benoist J-C, Bodin D, Tremier A (2013) Development and validation of a device for the measurement of free air space and air permeability in solid waste. Biosyst Eng 115(4):415–422. https://doi.org/10.1016/j.biosystemseng.2013.05.006

    Article  Google Scholar 

  13. Agnew JM, Leonard JJ, Feddes J, Feng Y (2003). A modified air pycnometer for compost air volume and density determination. Can Biosyst Eng/Le Genie Des Biosyst Au Canada 45

    Google Scholar 

  14. Ruggieri L, Gea T, Artola A, Sánchez A (2009) Air filled porosity measurements by air pycnometry in the composting process: a review and a correlation analysis. Bioresour Technol 100(10):2655–2666. https://doi.org/10.1016/j.biortech.2008.12.049

    Article  CAS  Google Scholar 

  15. Lam HL, Ng WPQ, Ng RTL, Huay Ng E, Aziz MKA, Ng DKS (2013). Green strategy for sustainable waste-to-energy supply chain. Energy 57(Supplement C):4–16. https://doi.org/10.1016/j.energy.2013.01.032

    Article  Google Scholar 

  16. Lam HL, Varbanov PS, Klemeš JJ (2011) Regional renewable energy and resource planning. Appl Energy 88(2):545–550. https://doi.org/10.1016/j.apenergy.2010.05.019

    Article  Google Scholar 

  17. Klemeš JJ, Varbanov PS, Kravanja Z (2013) Recent developments in process integration. Chem Eng Res Design 91(10):2037–2053. https://doi.org/10.1016/j.cherd.2013.08.019

    Article  Google Scholar 

  18. Antonio Bizzo W, Lenço PC, Carvalho DJ, Veiga JPS (2014) The generation of residual biomass during the production of bio-ethanol from sugarcane, its characterization and its use in energy production. Renew Sustain Energy Rev 29 (Supplement C):589–603. https://doi.org/10.1016/j.rser.2013.08.056

    Article  CAS  Google Scholar 

  19. Lam PSW, Sokhansanj S, Bi X, Lim J, Naimi L, Hoque M, Mani S, Womac AR, Ye XP, Narayan S (2008) Bulk density wet dry wheat straw switchgrass particles. Appl Eng Agri 24. https://doi.org/10.13031/2013.24490

    Article  Google Scholar 

  20. Liu Y, Wang X, Xiong Y, Tan H, Niu Y (2014) Study of briquetted biomass co-firing mode in power plants. Appl Therm Eng 63(1):266–271. https://doi.org/10.1016/j.applthermaleng.2013.10.041

    Article  Google Scholar 

  21. Shankar Tumuluru J, Wright CT, Boardman RD, Yancey NA, Sokhansanj S (2011) A review on biomass classification and composition, co-firing issues and pretreatment methods. 2011 Louisville, Kentucky, August 7–10, 2011. ASABE Paper No. 1110458. St. Joseph, MI: ASABE. https://doi.org/10.13031/2013.37191

  22. Elmay Y, Trouvé G, Jeguirim M, Said R (2013) Energy recovery of date palm residues in a domestic pellet boiler. Fuel Process Technol 112(Supplement C):12–18. https://doi.org/10.1016/j.fuproc.2013.02.015

    Article  CAS  Google Scholar 

  23. Mani S, Tabil LG, Sokhansanj S (2004a) Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass Bioenergy 27(4):339–352. https://doi.org/10.1016/j.biombioe.2004.03.007

    Article  Google Scholar 

  24. Mani S, Tabil L, Sokhansanj S (2004b) Evaluation of compaction equations applied to four biomass species. Can Biosyst Eng 46

    Google Scholar 

  25. Chevanan N, Womac AR, Bitra VSP, Igathinathane C, Yang YT, Miu PI, Sokhansanj S (2010) Bulk density and compaction behavior of knife mill chopped switchgrass, wheat straw, and corn stover. Bioresour Technol 101(1):207–214. https://doi.org/10.1016/j.biortech.2009.07.083

    Article  CAS  Google Scholar 

  26. Tumuluru JS, Wright CT, Richard Hess J, Kenney KL (2011) A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioprod Bioref 5(6):683–707. Wiley. https://doi.org/10.1002/bbb.324

    Article  CAS  Google Scholar 

  27. Kaliyan N, Morey RV (2010) Densification characteristics of corn cobs. Fuel Process Technol 91(5):559–565. https://doi.org/10.1016/j.fuproc.2010.01.001

    Article  CAS  Google Scholar 

  28. Jaworek A, Czech T, Sobczyk AT, Krupa A (2013) Properties of biomass vs. coal fly ashes deposited in electrostatic precipitator. J Electrostat 71(2):165–175. https://doi.org/10.1016/j.elstat.2013.01.009

    Article  CAS  Google Scholar 

  29. Zamorano M, Popov V, Rodríguez ML, García-Maraver A (2011) A comparative study of quality properties of pelletized agricultural and forestry lopping residues. Renewable Energy 36:3133–3140.

    Article  Google Scholar 

  30. Theerarattananoon K, Xu F, Wilson J, Ballard R, Mckinney L, Staggenborg S, Vadlani P, Pei ZJ, Wang D (2011) Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem. Ind Crops Prod 33(2):325–332. https://doi.org/10.1016/j.indcrop.2010.11.014

    Article  CAS  Google Scholar 

  31. Samuelsson R, Thyrel M, Sjöström M, Lestander TA (2009) Effect of biomaterial characteristics on pelletizing properties and biofuel pellet quality. Fuel Process Technol 90(9):1129–1134. https://doi.org/10.1016/j.fuproc.2009.05.007

    Article  CAS  Google Scholar 

  32. Fasina OO (2008) Physical properties of peanut hull pellets. Bioresour Technol 99(5):1259–1266. https://doi.org/10.1016/j.biortech.2007.02.041

    Article  CAS  Google Scholar 

  33. Abdullah N, Sulaiman F, Gerhauser H (2011) Characterisation of oil palm empty fruit bunches for fuel application. J Phys Sci 22(1):1–24

    CAS  Google Scholar 

  34. Cardoso CR, Oliveira TJP, Santana JA Jr, Ataíde CH (2013) Physical characterization of sweet sorghum bagasse, tobacco residue, soy hull and fiber sorghum bagasse particles: density, particle size and shape distributions. Powder Technol 245(Supplement C):105–114. https://doi.org/10.1016/j.powtec.2013.04.029

    Article  CAS  Google Scholar 

  35. Mani S, Tabil LG, Sokhansanj S (2006) Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy 30(7):648–654. https://doi.org/10.1016/j.biombioe.2005.01.004

    Article  Google Scholar 

  36. Patel B, Gami B, Bhimani H (2011) Improved fuel characteristics of cotton stalk, prosopis and sugarcane bagasse through torrefaction. Energy Sustain Develop 15(4):372–375. https://doi.org/10.1016/j.esd.2011.05.002

    Article  CAS  Google Scholar 

  37. Sadaka S, Negi S (2009) Improvements of biomass physical and thermochemical characteristics via torrefaction process. Environ Progress Sustain Energy 28(3):427–434. Wiley. https://doi.org/10.1002/ep.10392

    Article  CAS  Google Scholar 

  38. Sabil KM, Aziz MA, Lal B, Uemura Y (2013) Effects of torrefaction on the physiochemical properties of oil palm empty fruit bunches, mesocarp fiber and kernel shell. Biomass Bioenergy 56(Supplement C):351–360. https://doi.org/10.1016/j.biombioe.2013.05.015

    Article  CAS  Google Scholar 

  39. Solid Biofuels—Determination of Bulk Density (2009) Management

    Google Scholar 

  40. Sims REH (2002) The brilliance of bioenergy: in business and in practice. James & James (Science Publishers). https://books.google.com.my/books?id=UONAkQ6w2qgC

  41. Omar R, Idris A, Yunus R, Khalid K, Aida Isma MI (2011) Characterization of empty fruit bunch for microwave-assisted pyrolysis. Fuel 90(4):1536–1544. Elsevier. https://doi.org/10.1016/J.FUEL.2011.01.023

    Article  CAS  Google Scholar 

  42. Aziz, MKA, Morad NA, Wambeck N, Shah MH (2011) Optimizing palm biomass energy though size reduction. In 2011 fourth international conference on modeling, simulation and applied optimization, pp 1–6. https://doi.org/10.1109/ICMSAO.2011.5775516

  43. Phyllis2, Database for Biomass and Waste (n.d.) Energy research centre of the Netherlands. https://www.ecn.nl/phyllis2

  44. Serup H, Kofman PD, Falster H (2005) Wood for energy production, Irish Edition. COFORD, Dublin, 72p

    Google Scholar 

  45. Ciolkosz D (2010) Characteristics of biomass as a heating fuel, vol 4

    Google Scholar 

Download references

Acknowledgements

The financial supports from Long Term Research Grant Scheme (UPM/700-1/3/LRGS), University of Nottingham Early Career Research and Knowledge Transfer Award (A2RHL6), and Institute of Advanced Technology of Universiti Putra Malaysia are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hon Loong Lam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, J.P., Lam, H.L., Aziz, M.K.A. (2019). Numerical Methods to Estimate Biomass Calorific Values via Biomass Characteristics Index. In: Foo, D., Tun Abdul Aziz, M. (eds) Green Technologies for the Oil Palm Industry. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-2236-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2236-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2235-8

  • Online ISBN: 978-981-13-2236-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics