Skip to main content

Characteristics of Indoor Environmental Quality

  • Chapter
  • First Online:
Office Buildings

Part of the book series: Design Science and Innovation ((DSI))

Abstract

Indoor environmental quality (IEQ) in an office/non-residential building is determined by environmental aspects, covering the physical (lighting, acoustics, and thermal conditions), chemical (indoor air quality), and biological (microorganisms) origins. This chapter focuses on the assessment of chemical and physical parameters, particulates including PM10, PM2.5, and aerosols, CO2, CO, NOx, VOCs, black carbon, radon concentration, climatic factors, acoustic and lighting, and also the characterization of fungal and other microbial contaminants. Hundreds of VOCs have been identified in indoor air. Different range of concentrations of the VOC classes indicates source apportionment of indoor VOCs. The VOCs provoke symptoms typical of SBS, including mucous membrane annoyance, skin irritation, exacerbation of asthma, fatigue, liver, and kidney damage and increased cancer risks. A section is dedicated to lAQ management, concerning guidelines of exposure included in green building rating schemes. In managing IAQ, the preferred pathways are (i) emission source control, aiming at choosing low-emission indoor materials, building construction and renovation practices, (ii) ventilation to provide for appropriate indoor/outdoor air exchange, and (iii) periodic indoor air monitoring to comply with the given threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ACGIH. (2001/2003) Threshold limit values for chemical substances and physical agents and biological exposure indices. American Conference of Governmental Industrial Hygienists, 1330 Kemper Meadow Drive, 6500 Glenway, Building D-7, Cincinnati, OH, USA.

    Google Scholar 

  • Anderson, S. E., Franko, J., Jackson, L. G., Wells, J. R., Ham, J. E., & Meade, B. J. (2012). Irritancy and allergic responses induced by exposure to the indoor air chemical 4-oxopentanal. Toxicological Sciences, 127(2), 371–381.

    Article  Google Scholar 

  • Anderson, S. E., Jackson, L. G., Franko, J., & Wells, J. R. (2010). Evaluation of dicarbonyls generated in a simulated indoor air environment using an in vitro exposure system. Toxicological Sciences, 115(2), 453–461.

    Article  Google Scholar 

  • ANSI/ASHRAE (1989/2007/2010/2013). 62.1-2013, Ventilation for Acceptable Indoor Air Quality. ASHRAE, Atlanta, Georgia. http://www.ashrae.org.

  • ANSI/ASHRAE 55 (2004, 2007, 2009, 2010, 2013 versions). Thermal Environmental Conditions for Human Occupancy, ASHRAE, Atlanta, GA.

    Google Scholar 

  • Apte, M. G., Buchanan, I. S. H., & Mendell, M. J. (2008). Outdoor ozone and building-related symptoms in the BASE study. Indoor Air, 18(2), 156–170.

    Article  Google Scholar 

  • ASHRAE. (2009). Chapter 9: Thermal Comfort in ASHRAE Handbook: Fundamentals (SI). ASHRAE, Atlanta, Georgia.

    Google Scholar 

  • Bennett, D. H., Apte, M., Wu, X., Trout, A., Faulkner, D., Maddalena, R., & Sullivan, D. (2011). Indoor environmental quality and heating, ventilating, and air conditioning survey of small and medium size commercial buildings: Field study. Final Report for CEC-500-2011-043, California Energy Commission, Sacramento, California (USA).

    Google Scholar 

  • Benton, C., Bauman, F., & Fountain, M. (1990). A field measurement system for the study of thermal comfort. ASHRAE Transactions, 96, 623–633.

    Google Scholar 

  • Bernhard, C. A., Kirchner, S., Knutti, R., & Lagoudi, A. (1995). Volatile organic compounds in 56 European office buildings. In Maroni, M. (Ed.), Proceedings of the Healthy Buildings, Milan (Vol. 95, pp. 1347–1352).

    Google Scholar 

  • Bluyssen, P. M. (2009). The indoor environment handbook: How to make buildings healthy and comfortable. London: Routledge.

    Book  Google Scholar 

  • Bornehag, C. G., Lundgren, B., Weschler, C. J., Sigsgaard, T., Hagerhed-Engman, L., & Sundell, J. (2005). Phthalates in indoor dust and their association with building characteristics. Environmental Health Perspectives, 113(10), 1399.

    Article  Google Scholar 

  • Bornehag, C. G., & Stridh, G. (2000). Volatile organic compounds (VOCs) in the Swedish housing stock. In Seppanen, O., Sateri, J. (Eds.), Proceedings of the Healthy Buildings 2000, Espoo (Vol. 1, pp. 437–442).

    Google Scholar 

  • BREEAM. (2014, 2016). Building Research Establishment Environmental Assessment Method, developed by BRE (UK), http://www.breeam.org.

  • Brightman, H. S., Milton, D. K., Wypij, D., Burge, H. A., & Spengler, J. D. (2008). Evaluating building-related symptoms using the US EPA BASE study results. Indoor Air, 18(4), 335–345.

    Article  Google Scholar 

  • Brown, S. K. (1999). Occurring of volatile organic compounds in indoor air. In T. Salthammer (Ed.), Organic Indoor Air Pollutants (pp. 171–184). Weinheim: Wiley-VCH.

    Google Scholar 

  • Brown, S. K., Sim, M. R., Abramson, M. J., & Gray, C. N. (1994). Concentrations of volatile organic compounds in indoor air–a review. Indoor Air, 4(2), 123–134.

    Article  Google Scholar 

  • Buonanno, G., Morawska, L., Stabile, L., & Viola, A. (2010). Exposure to particle number, surface area and PM concentrations in pizzerias. Atmospheric Environment, 44(32), 3963–3969.

    Article  Google Scholar 

  • Burton, L. E., Baker, B., Hanson, D., Girman, J. G., Womble, S. E., & McCarthy, J. F. (2000). Baseline information on 100 randomly selected office buildings in the United States (BASE): Gross building characteristics. In Proceedings of Healthy Buildings 2000 (Vol. 1, pp. 151–155). http://www.epa.gov/iaq/base/pdfs/basea2396.pdf.

  • CARB. (2005). Report to the California legislature: Indoor air pollution in California. Pursuant to Health and Safety code 39930 (Assembly Bill 1173, Keeley, 2002). California Air Resources Board, Call No. A 1165 I422 2005, http://www.carb.ca.gov/research/apr/reports/l3041.pdf.

  • Chen, C., & Zhao, B. (2011). Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmospheric Environment, 45(2), 275–288.

    Article  Google Scholar 

  • Chiang, C. M., Chou, P. C., Lai, C. M., & Li, Y. Y. (2001). A methodology to assess the indoor environment in care centers for senior citizens. Building and Environment, 36(4), 561–568.

    Article  Google Scholar 

  • Choi, J. H., Loftness, V., & Aziz, A. (2012). Post-occupancy evaluation of 20 office buildings as basis for future IEQ standards and guidelines. Energy and Buildings, 46, 167–175.

    Article  Google Scholar 

  • Clausen, P. A., Wilkins, C. K., & Nielsen, G. D. (2000). Formation of strong airway irritants in terpene/ozone mixtures. Indoor Air, 10(2), 82–91.

    Article  Google Scholar 

  • Demokritou, P., Lee, S. J., Ferguson, S. T., & Koutrakis, P. (2004). A compact multistage (cascade) impactor for the characterization of atmospheric aerosols. Journal of Aerosol Science, 35(3), 281–299.

    Article  Google Scholar 

  • DGNB. (2009). German sustainable building certificate: Structure—application—criteria. Stuttgart, 2nd English Edition, http://www.dgnb.de/.

  • EN 13779. (2006). Ventilation for non-residential buildings e performance requirements for ventilation and room-conditioning systems. CEN.

    Google Scholar 

  • EN 15251. (2007). Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings—Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics, CEN, Brussels.

    Google Scholar 

  • Environmental Health and Engineering, EHE. (2002). A Screening-Level Ranking of Organic Chemicals and Metals Found in Indoor Air. Newton, Massachusetts. Environmental Health and Engineering, Inc.

    Google Scholar 

  • Estidama Pearl Rating system, Abu Dhabi, UAE Urban Planning Council, 2011.

    Google Scholar 

  • Forester, C. D., & Wells, J. R. (2009). Yields of carbonyl products from gas-phase reactions of fragrance compounds with OH radical and ozone. Environmental Science and Technology, 43(10), 3561–3568.

    Article  Google Scholar 

  • Girman, J. R., Hadwen, G. E., Burton, L. E., Womble, S. E., & McCarthy, J. F. (1999). Individual volatile organic compound prevalence and concentrations in 56 buildings of the building assessment survey and evaluation (BASE) study. Indoor Air, 99, 460–465.

    Google Scholar 

  • Green Globes. (2010). ANSI/GBI 01–2010: Green Building Assessment Protocol for Commercial Buildings. Green Building Initiative, Jessup, MD, USA, http://www.thegbi.org.

  • GREENSHIP. Indonesia Green Building Council Indonesia (GBCI), www.gbcindonesia.org.

  • Harrad, S., de Wit, C. A., Abdallah, M. A. E., Bergh, C., Björklund, J. A., Covaci, A., et al. (2010). Indoor contamination with hexabromocyclododecanes, polybrominated diphenyl ethers, and perfluoroalkyl compounds: An important exposure pathway for people? Environmental Science and Technology, 44(9), 3221–3231.

    Article  Google Scholar 

  • Hauser, R., & Calafat, A. M. (2005). Phthalates and human health. Occupational and Environmental Medicine, 62(11), 806–818.

    Article  Google Scholar 

  • Heinzerling, D., Schiavon, S., Webster, T., & Arens, E. (2013). Indoor environmental quality assessment models: A literature review and a proposed weighting and classification scheme. Building and Environment, 70, 210–222.

    Article  Google Scholar 

  • Helmis, C. G., Tzoutzas, J., Flocas, H. A., Halios, C. H., Stathopoulou, O. I., Assimakopoulos, V. D., et al. (2007). Indoor air quality in a dentistry clinic. Science of the Total Environment, 377(2), 349–365.

    Article  Google Scholar 

  • HKBEAM Society. (2003). HK-BEAM: The Hong Kong Building Environmental Assessment Method, http://www.hk-beam.org.hk/general/home.php.

  • Hodgson, A. T., Faulkner, D., Sullivan, D. P., DiBartolomeo, D. L., Russell, M. L., & Fisk, W. J. (2003). Effect of outside air ventilation rate on volatile organic compound concentrations in a call center. Atmospheric Environment, 37(39), 5517–5527.

    Article  Google Scholar 

  • Holcomb, L. C., & Seabrook, B. S. (1995). Indoor concentrations of volatile organic compounds: Implications for comfort, health and regulation. Indoor Environment, 4(1), 7–26.

    Article  Google Scholar 

  • HQE (Haute Qualité Environnementale)—France, http://assohqe.org/hqe/ 2005, by CSTB (Centre Scientifique et Technique du Bâtiment).

  • Hummel, T., Dalton, P., & Dilks, D. D. (2000). Effects of exposure to irritants. Chemical Senses, 25, 788.

    Google Scholar 

  • Hunt, A., Johnson, D. L., Brooks, J., & Griffith, D. A. (2008). Risk remaining from fine particle contaminants after vacuum cleaning of hard floor surfaces. Environmental Geochemistry and Health, 30(6), 597–611.

    Article  Google Scholar 

  • ISO 14644-1. (1999). Cleanrooms and associate controlled environments—Part 1—classification of air cleanliness. The Institute of Environmental Sciences and Technology (IEST), 5005 Newport Drive, Suite 506, Rolling Meadows, IL 60008, USA, 18p.

    Google Scholar 

  • ISO 16000-3. (2011). Indoor air—part 3: Determination of formaldehyde and other carbonyl compounds in indoor air and test chamber air—active sampling method. 2011. https://www.iso.org/obp/ui/#iso:std:iso:16000:-3:ed-2:v1:en.

  • ISO 16000-6. (2011). Indoor air—Part 6: Determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA sorbent, thermal desorption and gas chromatography using MS or MS-FID.

    Google Scholar 

  • ISO 16000-28. (2012). Indoor air—Part 28: Determination of odour emissions from building products using test chambers.

    Google Scholar 

  • ISO/IEC/17025:2005. (2005). General requirements for the competence of testing and calibration laboratories.

    Google Scholar 

  • Julien, R., Adamkiewicz, G., Levy, J. I., Bennett, D., Nishioka, M., & Spengler, J. D. (2008). Pesticide loadings of select organophosphate and pyrethroid pesticides in urban public housing. Journal of Exposure Science & Environmental Epidemiology, 18(2), 167–174.

    Article  Google Scholar 

  • Kim, H., & Haberl, J. (2012a). Field-test of the new ASHRAE/CIBSE/USGBC performance measurement protocols for commercial buildings: Basic level. ASHRAE Transactions 118.

    Google Scholar 

  • Kim, H., & Haberl, J.S. (2012b). Field-test of the new ASHRAE/CIBSE/USGBC performance measurement protocols: Intermediate and advanced level indoor environmental quality protocols. ASHRAE Transactions, 118(2), 58–65.

    Google Scholar 

  • Klenø, J., & Wolkoff, P. (2004). Changes in eye blink frequency as a measure of trigeminal stimulation by exposure to limonene oxidation products, isoprene oxidation products and nitrate radicals. International Archives of Occupational and Environmental Health, 77(4), 235–243.

    Article  Google Scholar 

  • klima:aktiv house, http://www.klimaaktiv.at.

  • Knol, A. B., Nemery, B., Brunekreef, B., Lebret, E., Cassee, F. R., Forastiere, F., et al. (2009). Expert elicitation on ultrafine particles: Likelihood of health effects and causal pathways. Particle and Fibre Toxicology, 6(1), 19.

    Article  Google Scholar 

  • Lai, A. C. (2006). Particle deposition and decay in a chamber and the implications to exposure assessment. Water, Air, and Soil pollution, 175(1), 323–334.

    Article  Google Scholar 

  • LEED (Leadership in Energy and Environmental Design). U.S. Green Building Council (USGBC), LEED Version 4 (updated 2016), http://www.usgbc.org/leed.

  • Li, T. H., Turpin, B. J., Shields, H. C., & Weschler, C. J. (2002). Indoor hydrogen peroxide derived from ozone/d-limonene reactions. Environmental Science and Technology, 36(15), 3295–3302.

    Article  Google Scholar 

  • Logue, J. M., Small, M. J., & Robinson, A. L. (2009). Identifying priority pollutant sources: Apportioning air toxics risks using positive matrix factorization. Environmental Science and Technology, 43(24), 9439–9444.

    Article  Google Scholar 

  • MADEP (Massachusetts Department of Environmental Protection). (2002). WSC POLICY: 02-430. Indoor Air Sampling and Evaluation Guide. Office of Research and Standards. Department of Environmental Protection. CommonHealth of Massachusetts, U.S 157.

    Google Scholar 

  • MAK–Maximum Concentrations at the Workplace and Biological Tolerance Values for Working Materials 2000. Commission for the Investigation of Health Hazard of Chemical Compounds in the Work Area, Federal Republic of Germany.

    Google Scholar 

  • Meng, Q. Y., Turpin, B. J., Lee, J. H., Polidori, A., Weisel, C. P., Morandi, M., et al. (2007). How does infiltration behaviour modify the composition of ambient PM2.5 in indoor spaces? An analysis of RIOPA data. Environmental Science and Technology, 41(21), 7315–7321.

    Article  Google Scholar 

  • Mohammadyan, M., Ashmore, M., & Shabankhani, B. (2010). Indoor PM2.5 concentrations in the office, café, and home. International Journal of Occupational Hygiene, 2(2), 57–62.

    Google Scholar 

  • Morgan, M. K., Sheldon, L. S., Croghan, C. W., Jones, P. A., Chuang, J. C., & Wilson, N. K. (2007). An observational study of 127 preschool children at their homes and daycare centers in Ohio: Environmental pathways to cis-and trans-permethrin exposure. Environmental Research, 104(2), 266–274.

    Article  Google Scholar 

  • Morrison, G. (2008). Interfacial chemistry in indoor environments. Environmental Science and Technology, 42(10), 3495–3499.

    Article  Google Scholar 

  • Morrison, G. C., & Nazaroff, W. W. (2002). Ozone interactions with carpet: Secondary emissions of aldehydes. Environmental Science and Technology, 36(10), 2185–2192.

    Article  Google Scholar 

  • Mui, K. W., & Chan, W. T. (2005). A new indoor environmental quality equation for air-conditioned buildings. Architectural Science Review, 48(1), 41–46.

    Article  Google Scholar 

  • Mullen, N. A., Bhangar, S., Hering, S. V., Kreisberg, N. M., & Nazaroff, W. W. (2011). Ultrafine particle concentrations and exposures in six elementary school classrooms in northern California. Indoor Air, 21(1), 77–87.

    Article  Google Scholar 

  • NABERS–Australia National Australian Building Environmental Rating Scheme (2000), www.abgr.com.au.

  • NAS. (1998). Health effects of exposure to radon (BEIR VI). Washington DC: National Academy of Sciences.

    Google Scholar 

  • Nazaroff, W. W., & Weschler, C. J. (2004). Cleaning products and air fresheners: Exposure to primary and secondary air pollutants. Atmospheric Environment, 38(18), 2841–2865.

    Article  Google Scholar 

  • Newsham, G., et al. (2012). Do green buildings outperform conventional buildings. Indoor environment and energy performance in North American offices.

    Google Scholar 

  • Nicol, J. F., & McCartney, K. (2000). Smart controls and thermal comfort project. SCATs final report, Oxford.

    Google Scholar 

  • Nøjgaard, J. K., Bilde, M., Stenby, C., Nielsen, O. J., & Wolkoff, P. (2006). The effect of nitrogen dioxide on particle formation during ozonolysis of two abundant monoterpenes indoors. Atmospheric Environment, 40(6), 1030–1042.

    Article  Google Scholar 

  • OEHHA. (2010). Acute, 8-hour and Chronic Reference Exposure Level (REL)s. Office of Environmental Health Hazard Assessment, http://www.oehha.ca.gov/air/a11re1s.htm1.

  • Paliaga, G. (2004). Operable windows, personal control and occupant comfort. Berkeley: University of California.

    Google Scholar 

  • Panagiotaras, D., Nikolopoulos, D., Petraki, E., Kottou, S., Koulougliotis, D., Yannakopoulos, P., et al. (2014). Comprehensive experience for indoor air quality assessment: A review on the determination of volatile organic compounds (VOCs). Journal of Physical Chemistry & Biophysics, 4(5), 1.

    Article  Google Scholar 

  • Piazza, T., & Apte, M. (2010). Indoor Environmental Quality and Heating, Ventilating, and Air Conditioning Survey of Small-and Medium-Size Commercial Buildings. California Energy Commission.

    Google Scholar 

  • Reitzig, M., Mohr, S., Heinzow, B., & Knöppel, H. (1998). VOC emissions after building renovations: Traditional and less common indoor air contaminants, potential sources, and reported health complaints. Indoor Air, 8(2), 91–102.

    Article  Google Scholar 

  • Rose, M., Bennett, D. H., Bergman, Ã…., Fängström, B., Pessah, I. N., & Hertz-Picciotto, I. (2010). PBDEs in 2–5 year-old children from California and associations with diet and indoor environment. Environmental Science and Technology, 44(7), 2648–2653.

    Article  Google Scholar 

  • Samet, J., & Krewski, D. (2007). Health effects associated with exposure to ambient air pollution. Journal of Toxicology and Environmental Health, Part A, 70(3–4), 227–242.

    Article  Google Scholar 

  • Sarnat, S. E., Coull, B. A., Ruiz, P. A., Koutrakis, P., & Suh, H. H. (2006). The influences of ambient particle composition and size on particle infiltration in Los Angeles, CA, residences. Journal of the Air and Waste Management Association, 56(2), 186–196.

    Article  Google Scholar 

  • Singer, B. C., Coleman, B. K., Destaillats, H., Hodgson, A. T., Lunden, M. M., Weschler, C. J., et al. (2006). Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone. Atmospheric Environment, 40(35), 6696–6710.

    Article  Google Scholar 

  • Sotiriou, M., Ferguson, S. F., Davey, M., Wolfson, J. M., Demokritou, P., Lawrence, J., et al. (2008). Measurement of particle concentrations in a dental office. Environmental Monitoring and Assessment, 137(1–3), 351–361.

    Article  Google Scholar 

  • Stewart, J. C., Chalupa, D. C., Devlin, R. B., Frasier, L. M., Huang, L. S., Little, E. L., et al. (2010). Vascular effects of ultrafine particles in persons with type 2 diabetes. Environmental Health Perspectives, 118(12), 1692–1698.

    Article  Google Scholar 

  • Syazwan, A. I., Juliana, J., Norhafizalina, O., Azman, Z. A., & Kamaruzaman, J. (2009). Indoor air quality and sick building syndrome in Malaysian buildings. Global Journal of Health Science, 1(2), 126–135.

    Google Scholar 

  • TGBRS (2003). Teri Green Building Rating System, India.

    Google Scholar 

  • Tian, L., Zhang, G., Yu, J., Zhang, Q., & Zhou, J. (2008). Impact of surface roughness on particle penetration through building envelope leakage. International Journal of Energy Technology and Policy, 6(5–6), 534–542.

    Article  Google Scholar 

  • US EPA. (2003). A Standardized EPA Protocol for Characterizing Indoor Air Quality in Large Office Buildings, Office of Research and Development and Office of Air and Radiation, U.S. EPA., Washington, D.C.

    Google Scholar 

  • UK, HPA. (2009). Radon and Public Health: Report of the Subgroup on Radon Epidemiology of the Independent Advisory Group on Ionising Radiation, Health Protection Agency, UK.

    Google Scholar 

  • US EPA. (2007). NAAQS Table, National Ambient Air Quality Standards. 2007, https://www.epa.gov/criteria-air-pollutants/naaqs-table.

  • US EPA, IRIS (2010). Integrated Risk Information System. Environmental Protection Agency, http://www.epa.gov/IRIS/.

  • US EPAct. (2005). Energy policy act of 2005, United States Public Law 109-58.

    Google Scholar 

  • US OSHA. (1989). Air Contaminants-Permissible Exposure limits (Title 29, Code of Federal Regulations, Part 1910.1000).

    Google Scholar 

  • US OSHA. (1994). OSHA Regulations (Standards-29 CFR) Part 1910 OSHA Z Toxic and Hazardous Substances 1910.1000 TABLE Z-1 Limits for Air Contaminants. Occupational Safety and Health Administration. Washington, D.C.

    Google Scholar 

  • US OSHA, A. (2003). Brief Guide to Mold in the Workplace. Occupational Safety and Health Administration, US Department of Labor, Washington, DC, http://www.osha.gov/dts/shib/shib101003.pdf.

  • US-EPA. (1990). Compendium of methods for the determination of air pollutants in indoor air. In E. S. F. A. R. A. E. A (Ed.), Laboratory, Office of Research and Development, EPA, North Carolina.

    Google Scholar 

  • US-EPA. (1984). Compendium of methods for the determination of toxic organic compounds in ambient air. Compiled by R.M. Riggin of Battelle-Columbus Laboratories, Columbus, Ohio for Environmental Monitoring System Laboratory, EPA, Research Triangle Park, North Carolina.

    Google Scholar 

  • US-EPA. (1999). Compendium of methods for the determination of toxic organic compounds in ambient air. In C. F. E (Ed.), Information, Environment Protection Agency (2nd ed.).

    Google Scholar 

  • Valavanidis, A., Fiotakis, K., & Vlachogianni, T. (2008). Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. Journal of Environmental Science and Health, Part C, 26(4), 339–362.

    Article  Google Scholar 

  • Vartiainen, E., Kulmala, M., Ruuskanen, T. M., Taipale, R., Rinne, J., & Vehkamäki, H. (2006). Formation and growth of indoor air aerosol particles as a result of D-limonene oxidation. Atmospheric Environment, 40(40), 7882–7892.

    Article  Google Scholar 

  • Wallace, L., & Ott, W. (2011). Personal exposure to ultrafine particles. Journal of Exposure Science & Environmental Epidemiology, 21(1), 20–30.

    Article  Google Scholar 

  • Webster, T., Bauman, F., & Anwar, G. (2007). CBE Portable Wireless Monitoring System (PWMS): UFAD systems commissioning cart design specifications and operating manual.

    Google Scholar 

  • Wei, W., Ramalho, O., & Mandin, C. (2015). Indoor air quality requirements in green building certifications. Building and Environment, 92, 10–19.

    Article  Google Scholar 

  • Weschler, C. J. (2006). Ozone’s impact on public health: Contributions from indoor exposures to ozone and products of ozone-initiated chemistry. Environmental Health Perspectives, 114(10), 1489–1496.

    Article  Google Scholar 

  • Wilkins, C. K., Larsen, S. T., Hammer, M., Poulsen, O. M., WWkoff, P., & Nielsen, G. D. (1998). Respiratory effects in mice exposed to airborne emissions from Stachybotrys chartarum and implications for risk assessment. Basic & Clinical Pharmacology & Toxicology, 83(3), 112–119.

    Google Scholar 

  • World Bank Group (2008, December). Environmental, Health, and Safety Guidelines: THERMAL POWER PLANTS. International Finance Corporation (p. 33), http://www.ifc.org/ifcext/sustainability.nsf/AttachmentsByTitle/gui_EHSGuidelines2007_ThermalPower/$FILE/FINAL_Thermal+Power.pdf.

  • World Health Organization (WHO). (2010). WHO guidelines for indoor air quality: Selected pollutants. WHO Regional Office for Europe; ISBN 978-92-890-0213-4.

    Google Scholar 

  • Zock, J. P., Vizcaya, D., & Le Moual, N. (2010). Update on asthma and cleaners. Current opinion in Allergy and Clinical Immunology, 10(2), 114–120.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nag, P.K. (2019). Characteristics of Indoor Environmental Quality. In: Office Buildings. Design Science and Innovation. Springer, Singapore. https://doi.org/10.1007/978-981-13-2577-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2577-9_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2576-2

  • Online ISBN: 978-981-13-2577-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics