Skip to main content

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 451 Accesses

Abstract

Silicon is the most important element in the modern semiconductor industry. The shrinkage of the dimensions of nanomaterials is expected to result in new fascinating properties related to size and quantum effects which may lead to exciting applications. Understanding electron and phonon transport in silicon-based nanomaterials is essential for developing advanced electronic and thermoelectric systems. A large volume of research has been directed to experimental syntheses and property characterizations of the various silicon-based nanostructures, including zero-dimensional nanoclusters, one-dimensional nanowires, and two-dimensional nanosheets. Also, intensive efforts have been made to develop computational predictions of the novel thermal properties of pristine silicon-based nanostructures. The authors have conducted original computational work on the phonon thermal transport of silicon-based nanomaterials with small dimensions ranging from zero dimensions to two dimensions which is expected to promote the development of silicon-based nanoscience and nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pease, R.F., Chou, S.Y.: Lithography and other patterning techniques for future electronics. Proc. IEEE 96(2), 248–270 (2008). https://doi.org/10.1109/JPROC.2007.911853

    Article  Google Scholar 

  2. Mahajan, R., Chiu, C.P., Chrysler, G.: Cooling a microprocessor chip. Proc. IEEE 94(8), 1476–1486 (2006). https://doi.org/10.1109/JPROC.2006.879800

    Article  Google Scholar 

  3. Snyder, G.J., Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7(2), 105 (2008). https://doi.org/10.1038/nmat2090

    Article  ADS  Google Scholar 

  4. Pop, E., Sinha, S., Goodson, K.E.: Heat generation and transport in nanometer-scale transistors. Proc. IEEE 94(8), 1587–1601 (2006). https://doi.org/10.1109/JPROC.2006.879794

    Article  Google Scholar 

  5. Heremans, J.P., Dresselhaus, M.S., Bell, L.E., Morelli, D.T.: When thermoelectrics reached the nanoscale. Nat. Nanotechnol. 8, 471–473 (2013). https://doi.org/10.1038/nnano.2013.129

    Article  ADS  Google Scholar 

  6. Esfahani, E.N., Ma, F., Wang, S., Ou, Y., Yang, J., Li, J.: Quantitative nanoscale mapping of three-phase thermal conductivities in filled skutterudites via scanning thermal microscopy. Nat. Sci. Rev. 5(1), 59–69 (2018). https://doi.org/10.1093/nsr/nwx074

    Article  Google Scholar 

  7. Chen, G., Dresselhaus, M.S., Dresselhaus, G., Fleurial, J.P., Caillat, T.: Recent developments in thermoelectric materials. Int. Mater. Rev. 48(1), 45–66 (2003). https://doi.org/10.1179/095066003225010182

    Article  Google Scholar 

  8. Takabatake, T., Suekuni, K., Nakayama, T., Kaneshita, E.: Phonon-glass electron-crystal thermoelectric clathrates: experiments and theory. Rev. Mod. Phys. 86(2), 669 (2014). https://doi.org/10.1103/RevModPhys.86.669

    Article  ADS  Google Scholar 

  9. Beekman, M., Morelli, D.T., Nolas, G.S.: Better thermoelectrics through glass-like crystals. Nat. Mater. 14(12), 1182 (2015). https://doi.org/10.1038/nmat4461

    Article  ADS  Google Scholar 

  10. Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., Lee, H., Wang, D.Z., Ren, Z.F., Fleurial, J.P., Gogna, P.: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19(8), 1043–1053 (2007). https://doi.org/10.1002/adma.200600527

    Article  Google Scholar 

  11. Bulusu, A., Walker, D.G.: Modeling of thermoelectric properties of semiconductor thin films with quantum and scattering effects. J. Heat Transf. 129(4), 492–499 (2007). https://doi.org/10.1115/1.2709962

  12. Dresselhaus, M.S., Dresselhaus, G., Sun, X., Zhang, Z., Cronin, S.B., Koga, T.: Low-dimensional thermoelectric materials. Phys. Solid State 41(5), 679–682 (1999). https://doi.org/10.1134/1.1130849

    Article  ADS  Google Scholar 

  13. Zhou, Y., Yao, Y., Hu, M.: Boundary scattering effect on the thermal conductivity of nanowires. Semicond. Sci. Tech. 31(7), 074004 (2016). https://doi.org/10.1088/0268-1242/31/7/074004

    Article  ADS  Google Scholar 

  14. Zhou, G., Zhang, G.: General theories and features of interfacial thermal transport. Chin. Phys. B 27(3), 034401 (2018). https://doi.org/10.1088/1674-1056/27/3/034401

    Article  ADS  Google Scholar 

  15. Xu, W., Zhang, G., Li, B.: Interfacial thermal resistance and thermal rectification between suspended and encased single layer graphene. J. Appl. Phys. 116(13), 134303 (2014). https://doi.org/10.1063/1.4896733

    Article  ADS  Google Scholar 

  16. Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175), 163 (2008). https://doi.org/10.1038/nature06381

    Article  ADS  Google Scholar 

  17. Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.K., Goddard III, W.A., Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451(7175), 168 (2008). https://doi.org/10.1038/nature06458

    Article  ADS  Google Scholar 

  18. Li, H.P.: Molecular dynamics simulations of phonon thermal transport in low-dimensional silicon structures. Doctoral dissertation, City University of Hong Kong (2012)

    Google Scholar 

  19. Li, N., Ren, J., Wang, L., Zhang, G., Hänggi, P., Li, B.: Phononics: manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84(3), 1045 (2012). https://doi.org/10.1103/RevModPhys.84.1045

    Article  ADS  Google Scholar 

  20. Xu, X., Zhou, J., Yang, N., Li, N., Li, Y., Li, B.: Artificial microstructure materials and heat flux manipulation. Sci. Sinica Technol. 45(7), 705 (2015). https://doi.org/10.1360/N092015-00122

    Article  Google Scholar 

  21. Teo, B.K., Sun, X.H.: Silicon-based low-dimensional nanomaterials and nanodevices. Chem. Rev. 107(5), 1454–1532 (2007). https://doi.org/10.1021/cr030187n

    Article  Google Scholar 

  22. Okamoto, H., Sugiyama, Y., Nakano, H.: Synthesis and modification of silicon nanosheets and other silicon nanomaterials. Chemistry 17(36), 9864–9887 (2011). https://doi.org/10.1002/chem.201100641

    Article  Google Scholar 

  23. Bley, R.A., Kauzlarich, S.M.: A low-temperature solution phase route for the synthesis of silicon nanoclusters. J. Am. Chem. Soc. 118(49), 12461–12462 (1996). https://doi.org/10.1021/ja962787s

    Article  Google Scholar 

  24. Van Buuren, T., Dinh, L.N., Chase, L.L., Siekhaus, W.J., Terminello, L.J.: Changes in the electronic properties of Si nanocrystals as a function of particle size. Phys. Rev. Lett. 80(17), 3803 (1998). https://doi.org/10.1103/PhysRevLett.80.3803

    Article  ADS  Google Scholar 

  25. De Crescenzi, M., Castrucci, P., Scarselli, M., Diociaiuti, M., Chaudhari, P.S., Balasubramanian, C., Bhave, T.M., Bhoraskar, S.V.: Experimental imaging of silicon nanotubes. Appl. Phys. Lett. 86(23), 231901 (2005). https://doi.org/10.1063/1.1943497

    Article  ADS  Google Scholar 

  26. Perepichka, D.F., Rosei, F.: Silicon nanotubes. Small 2(1), 22–25 (2006). https://doi.org/10.1002/smll.200500276

    Article  Google Scholar 

  27. Zhang, R.Q., Lifshitz, Y., Lee, S.T.: Oxide-assisted growth of semiconducting nanowires. Adv. Mater. 15(7–8), 635–640 (2003). https://doi.org/10.1002/adma.200301641

    Article  Google Scholar 

  28. Morales, A.M., Lieber, C.M.: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348), 208–211 (1998). https://doi.org/10.1126/science.279.5348.208

    Article  ADS  Google Scholar 

  29. Okamoto, H., Kumai, Y., Sugiyama, Y., Mitsuoka, T., Nakanishi, K., Ohta, T., Nozaki, H., Yamaguchi, S., Shirai, S., Nakano, H.: Silicon nanosheets and their self-assembled regular stacking structure. J. Am. Chem. Soc. 132(8), 2710–2718 (2010). https://doi.org/10.1021/ja908827z

  30. Aufray, B., Kara, A., Vizzini, S., Oughaddou, H., Leandri, C., Ealet, B., Le Lay, G.: Graphene-like silicon nanoribbons on Ag (110): a possible formation of silicene. Appl. Phys. Lett. 96(18), 183102 (2010). https://doi.org/10.1063/1.3419932

    Article  ADS  Google Scholar 

  31. Zhang, C., De Sarkar, A., Zhang, R.Q.: Strain induced band dispersion engineering in Si nanosheets. J. Phys. Chem. C 115(48), 23682–23687 (2011). https://doi.org/10.1021/jp206911b

    Article  Google Scholar 

  32. Li, D., Wu, Y., Kim, P., Shi, L., Yang, P., Majumdar, A.: Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83(14), 2934–2936 (2003). https://doi.org/10.1063/1.1616981

    Article  ADS  Google Scholar 

  33. Sarikurt, S., Ozden, A., Kandemir, A., Sevik, C., Kinaci, A., Haskins, J.B., Cagin, T.: Tailoring thermal conductivity of silicon/germanium nanowires utilizing core-shell architecture. J. Appl. Phys. 119(15), 155101 (2016). https://doi.org/10.1063/1.4946835

    Article  ADS  Google Scholar 

  34. Markussen, T., Jauho, A.P., Brandbyge, M.: Surface-decorated silicon nanowires: a route to high-ZT thermoelectrics. Phys. Rev. Lett. 103(5), 055502 (2009). https://doi.org/10.1103/PhysRevLett.103.055502

    Article  ADS  Google Scholar 

  35. Li, D., Wu, Y., Fan, R., Yang, P., Majumdar, A.: Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 83(15), 3186–3188 (2003). https://doi.org/10.1063/1.1619221

    Article  ADS  Google Scholar 

  36. Mu, X., Wang, L., Yang, X., Zhang, P., To, A.C., Luo, T.: Ultra-low thermal conductivity in Si/Ge hierarchical superlattice nanowire. Sci. Rep. 5, 16697 (2015). https://doi.org/10.1038/srep16697

    Article  ADS  Google Scholar 

  37. Chen, G.: Particularities of heat conduction in nanostructures. J. Nanopart. Res. 2(2), 199–204 (2000). https://doi.org/10.1023/A:1010003718481

    Article  ADS  MathSciNet  Google Scholar 

  38. Ju, Y.S., Goodson, K.E.: Phonon scattering in silicon films with thickness of order 100 nm. Appl. Phys. Lett. 74(20), 3005–3007 (1999). https://doi.org/10.1063/1.123994

    Article  ADS  Google Scholar 

  39. Wang, Z., Li, Z.: Lattice dynamics analysis of thermal conductivity in silicon nanoscale film. Appl. Therm. Eng. 26(17–18), 2063–2066 (2006). https://doi.org/10.1016/j.applthermaleng.2006.04.020

    Article  Google Scholar 

  40. Terris, D., Joulain, K., Lemonnier, D., Lacroix, D., Chantrenne, P.: Prediction of the thermal conductivity anisotropy of Si nanofilms. Results of several numerical methods. Int. J. Therm. Sci. 48(8), 1467–1476 (2009). https://doi.org/10.1016/j.ijthermalsci.2009.01.005

    Article  Google Scholar 

  41. Liu, W., Asheghi, M.: Phonon-boundary scattering in ultrathin single-crystal silicon layers. Appl. Phys. Lett. 84(19), 3819–3821 (2004). https://doi.org/10.1063/1.1741039

    Article  ADS  Google Scholar 

  42. Liu, W., Asheghi, M.: Thermal conductivity measurements of ultra-thin single crystal silicon layers. J. Heat Transfer 128(1), 75–83 (2006). https://doi.org/10.1115/1.2130403

    Article  Google Scholar 

  43. Wang, Z., Feng, T., Ruan, X.: Thermal conductivity and spectral phonon properties of freestanding and supported silicene. J. Appl. Phys. 117(8), 084317 (2015). https://doi.org/10.1063/1.4913600

    Article  ADS  Google Scholar 

  44. Zhang, X., Bao, H., Hu, M.: Bilateral substrate effect on the thermal conductivity of two-dimensional silicon. Nanoscale 7(14), 6014–6022 (2015). https://doi.org/10.1039/C4NR06523A

    Article  ADS  Google Scholar 

  45. Wang, X., Hong, Y., Chan, P.K., Zhang, J.: Phonon thermal transport in silicene-germanene superlattice: a molecular dynamics study. Nanotechnology 28(25), 255403 (2017). https://doi.org/10.1088/1361-6528/aa71fa

    Article  ADS  Google Scholar 

  46. Liu, Z., Wu, X., Luo, T.: The impact of hydrogenation on the thermal transport of silicene. 2D Mater. 4, 025002 (2017). https://doi.org/10.1088/2053-1583/aa533e

  47. Liu, B., Reddy, C.D., Jiang, J., Zhu, H., Baimova, J.A., Dmitriev, S.V., Zhou, K.: Thermal conductivity of silicene nanosheets and the effect of isotopic doping. J. Phys. D Appl. Phys. 47(16), 165301 (2014). https://doi.org/10.1088/0022-3727/47/16/165301

    Article  ADS  Google Scholar 

  48. Li, H.P., Zhang, R.Q.: Vacancy-defect-induced diminution of thermal conductivity in silicene. EPL 99(3), 36001 (2012). https://doi.org/10.1209/0295-5075/99/36001

    Article  ADS  Google Scholar 

  49. Sadeghi, H., Sangtarash, S., Lambert, C.J.: Enhanced thermoelectric efficiency of porous silicene nanoribbons. Sci. Rep. 5, 9514 (2015). https://doi.org/10.1038/srep09514

    Article  ADS  Google Scholar 

  50. Zhao, W., Guo, Z.X., Zhang, Y., Ding, J.W., Zheng, X.J.: Enhanced thermoelectric performance of defected silicene nanoribbons. Solid State Commun. 227, 1–8 (2016). https://doi.org/10.1016/j.ssc.2015.11.012

    Article  ADS  Google Scholar 

  51. Wirth, L.J., Osborn, T.H., Farajian, A.A.: Resilience of thermal conductance in defected graphene, silicene, and boron nitride nanoribbons. Appl. Phys. Lett. 109(17), 173102 (2016). https://doi.org/10.1063/1.4965294

    Article  ADS  Google Scholar 

  52. Fang, K.C., Weng, C.I., Ju, S.P.: An investigation into the structural features and thermal conductivity of silicon nanoparticles using molecular dynamics simulations. Nanotechnology 17(15), 3909 (2006). https://doi.org/10.1088/0957-4484/17/15/049

    Article  ADS  Google Scholar 

  53. Ashby, S.P., Thomas, J.A., García-Cañadas, J., Min, G., Corps, J., Powell, A.V., Xu, H., Shen, W., Chao, Y.: Bridging silicon nanoparticles and thermoelectrics: phenylacetylene functionalization. Faraday Discuss. 176, 349–361 (2015). https://doi.org/10.1039/C4FD00109E

    Article  ADS  Google Scholar 

  54. Huang, X., Huai, X., Liang, S., Wang, X.: Thermal transport in Si/Ge nanocomposites. J. Phys. D Appl. Phys. 42(9), 095416 (2009). https://doi.org/10.1088/0022-3727/42/9/095416

    Article  ADS  Google Scholar 

  55. Davis, B.L., Hussein, M.I.: Nanophononic metamaterial: thermal conductivity reduction by local resonance. Phys. Rev. Lett. 112(5), 055505 (2014). https://doi.org/10.1103/PhysRevLett.112.055505

    Article  ADS  Google Scholar 

  56. Hopkins, P.E., Reinke, C.M., Su, M.F., Olsson III, R.H., Shaner, E.A., Leseman, Z.C., Serrano, J.R., Phinney, L.M., El-Kady, I.: Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. Nano Lett. 11(1), 107–112 (2010). https://doi.org/10.1021/nl102918q

    Article  ADS  Google Scholar 

  57. Zhang, R.Q.: Growth Mechanisms and Novel Properties of Silicon Nanostructures from Quantum-Mechanical Calculations. Springer, Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-40905-9

  58. Li, H.P., De Sarkar, A., Zhang, R.Q.: Surface-nitrogenation-induced thermal conductivity attenuation in silicon nanowires. EPL 96(5), 56007 (2011). https://doi.org/10.1209/0295-5075/96/56007

    Article  ADS  Google Scholar 

  59. Li, H.P., Zhang, R.Q.: Size-dependent structural characteristics and phonon thermal transport in silicon nanoclusters. AIP Adv. 3(8), 082114 (2013). https://doi.org/10.1063/1.4818591

    Article  ADS  Google Scholar 

  60. Li, H.P., Zhang, R.Q.: Anomalous effect of hydrogenation on phonon thermal conductivity in thin silicon nanowires. EPL 105(5), 56003 (2014). https://doi.org/10.1209/0295-5075/105/56003

    Article  ADS  Google Scholar 

  61. Xu, R.F., Han, K., Li, H.P.: Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: a molecular dynamics study. Chin. Phys. B 27(2), 026801 (2018). https://doi.org/10.1088/1674-1056/27/2/026801

    Article  ADS  Google Scholar 

  62. Li, H.P., Zhang, R.Q.: Surface effects on the thermal conductivity of silicon nanowires. Chin. Phys. B 27(3), 036801 (2018). https://doi.org/10.1088/1674-1056/27/3/036801

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Peng Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, HP., Zhang, RQ. (2018). Introduction. In: Phonon Thermal Transport in Silicon-Based Nanomaterials. SpringerBriefs in Physics. Springer, Singapore. https://doi.org/10.1007/978-981-13-2637-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2637-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2636-3

  • Online ISBN: 978-981-13-2637-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics