Skip to main content

Thorium-Based Fuels for Advanced Nuclear Reactors: Thermophysical, Thermochemical, and Thermodynamic Properties

  • Conference paper
  • First Online:
Thorium—Energy for the Future

Abstract

India is developing thorium-based nuclear technologies with the aim to introduce them in its energy mix that is sustainable in the long term. Various reactor systems based on thorium fuel cycle are being developed. These include (i) thorium utilization in existing reactors (PHWRs), (ii) advanced heavy water reactor (AHWR), (iii) metallic-fueled reactors (fast/thermal), and (iv) molten salt reactor (MSR). Different fuel forms being studied include oxides/carbides, metallic alloys, and fluoride salts. Comprehensive information on the physicochemical properties of fuel is a primary input as required by reactor engineers and safety analysts to predict its performance under normal/off-normal reactor operation scenarios. The variable parameters essentially include temperature, composition, microstructure, and radiation field. A reliable database on thermophysical, thermochemical, and thermodynamic properties of fuel and related materials is therefore essential. This chapter presents an overview of R&D efforts in this direction carried out at Chemistry Group of Bhabha Atomic Research Centre (BARC). Important results and their implications in terms of fuel’s performance potential are highlighted. While understanding of thorium-based oxide fuels (Th-U MOX, Th–Ce MOX, and SIMFUELS) has attained reasonable maturity, exciting potential of thorium-based in metallic fuel and fluoride salt fuel is being unearthed with recent experimental work. Few results on thorium-based metallic alloys are also presented. To conclude, glimpses of research efforts on thorium-based fluoride salts for Indian molten salt breeder reactor (IMSBR) are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.R.G. Kutty, J. Banerjee, A. Kumar, in Thoria-Based Nuclear Fuels: Thermophysical and Thermodynamic Properties, Fabrication, Reprocessing and Waste Management, ed. by D. Das, S.R. Bharadwaj, (Springer-Verlag, London, UK, 2013), pp. 11–71

    Google Scholar 

  2. C.G.S. Pillai, A.M. George, An improved comparative thermal conductivity apparatus for measurements at high temperatures. Int. J. Thermophys. 12(3), 563–576 (1991)

    Article  Google Scholar 

  3. W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, Flash method of determining thermal diffusivity, heat capacity and thermal conductivity. J. Appl. Phys. 32, 1679 (1961)

    Article  Google Scholar 

  4. N. Manoj, D. Jain, J.K. Gautam, K.C. Thomas, V. Sudarsan, C.G.S. Pillai, R.K. Vatsa, A.K. Tyagi, A simple, reliable, cost effective, and high temperature dilatometer for bulk thermal expansion studies on solids. Measurement 92, 318–325 (2016)

    Article  Google Scholar 

  5. C.G.S. Pillai, A.M. George, Thermal conductivity of uranium dioxide. J. Nucl. Mater. 200, 78–81 (1993)

    Article  Google Scholar 

  6. C.G.S. Pillai, P. Raj, Thermal conductivity of ThO2 and Th0.98U0.02O2. J. Nucl. Mater. 277, 116–119 (2000)

    Article  Google Scholar 

  7. D. Jain, C.G.S. Pillai, B.S. Rao, R.V. Kulkarni, E. Ramdasan, K.C. Sahoo, Thermal diffusivity and thermal conductivity of thoria-lanthana solid solutions up to 10 mol% LaO1.5. J. Nucl. Mater. 353, 35–41 (2006)

    Article  Google Scholar 

  8. A.K. Tyagi, M.D. Mathews, B.R. Ambekar, R. Ramachandran, Thermal expansion of ThO2-2, 4 and 6 wt.% UO2 by HT-XRD. Thermochim. Acta 421(1–2), 69–71 (2004)

    Article  Google Scholar 

  9. M.D. Mathews, B.R. Ambekar, A.K. Tyagi, Bulk and lattice thermal expansion of Th1−xCexO2. J. Nucl. Mater. 280(2), 246–249 (2000)

    Article  Google Scholar 

  10. M.D. Mathews, B.R. Ambekar, A.K. Tyagi, Phase relation and bulk thermal expansion studies in thoria-neodia system. J. Alloy. Compd. 386(1–2), 234–237 (2005)

    Article  Google Scholar 

  11. M.D. Mathews, B.R. Ambekar, A.K. Tyagi, Phase relations and linear thermal expansion of cubic solid solutions in the Th1−xMxO2−x/2 (M = Eu, Gd, Dy) systems. J. Nucl. Mater. 341(1), 19–24 (2005)

    Article  Google Scholar 

  12. A.K. Tyagi, M.D. Mathews, R. Ramachandran, Solubility limits and bulk thermal expansion of ThO2:Mn+ (M = Y3+, Sr2+ and Ba2+). J. Nucl. Mater. 294(1–2), 198–201 (2001)

    Article  Google Scholar 

  13. R.D. Purohit, A.K. Tyagi, M.D. Mathews, S. Saha, Combustion synthesis and bulk thermal expansion studies of Ba and Sr thorates. J. Nucl. Mater. 280, 51–55 (2000)

    Article  Google Scholar 

  14. S.R. Bharadwaj, R. Mishra, M. Basu, D. Das, in Thoria-Based Nuclear Fuels: Thermophysical and Thermodynamic Properties, Fabrication, Reprocessing and Waste Management, ed. by D. Das, S.R. Bharadwaj (Springer-Verlag, London, UK, 2013), pp. 107–156

    Google Scholar 

  15. D. Das, M. Basu, S. Kolay, A.N. Shirsat, Thoria-Based Nuclear Fuels: Thermophysical and Thermodynamic Properties, Fabrication, Reprocessing and Waste Management, ed. by D. Das, S.R. Bharadwaj, (Springer-Verlag, London, UK, 2013), pp. 157–204

    Google Scholar 

  16. M. (Ali) Basu, R. Mishra, S.R. Bharadwaj, D. Das, Thermodynamic and transport properties of thoria–urania fuel of advanced heavy water reactor. J. Nucl. Mater. 403, 204–215 (2010)

    Google Scholar 

  17. A.N. Shirsat, M. (Ali) Basu, S. Kolay, A. Datta, D. Das, Transport properties of I, Te and Xe in thoria-urania SIMFUEL. J. Nucl. Mater. 392, 16–21 (2009)

    Article  Google Scholar 

  18. A.H. Booth, G.T. Rymer, Determination of the Diffusion Constant of Fission Xenon in UO2 Crystals and Sintered Compacts. CRDC Report (CRDC-720) (1958)

    Google Scholar 

  19. S.C. Chetal, P. Chellapandi, P. Puthiyavinayagam, S. Raghupathy, V. Balasubramaniyan, P. Selvaraj, P. Mohankrishnan, B. Raj, Current status of fast reactors and future plans in India. Energy Proceedia 7, 64–73 (2011)

    Article  Google Scholar 

  20. W.J. Carmak, D.L. Porter, Y.I. Chang, S.L. Hayes, M.K. Meyer, D.E. Burkes, C.B. Lee, T. Mizuno, F. Delage, J. Somers, Metallic fuels for advanced reactors. J. Nucl. Mater. 392, 139–150 (2009)

    Article  Google Scholar 

  21. D. Jain, V. Sudarsan, A.K. Tyagi, Thorium-based metallic alloys as nuclear fuels: present status, potential advantages and challenges. SMC Bull. Soc. Mater. Chem. 4(1), 27–40 (2013)

    Google Scholar 

  22. S. Das, R. Kumar, S.B. Roy, A.K. Suri, Developmental study on metallic thorium and uranium-thorium alloy. BARC Newsletter, Founder’s Day Special Issue, pp. 7 2–76 (2011)

    Google Scholar 

  23. S. Das, S. Kaity, R. Kumar, J. Banerjee, S.B. Roy, G.P. Chaudhari, B.S.S. Daniel, Characterization of microstructural, mechanical and thermophysical properties of Th-52U alloy. J. Nucl. Mater. 480, 223–234 (2016)

    Article  Google Scholar 

  24. D. Jain, C.G.S. Pillai, Thermophysical characterization of thorium and uranium based metallic fuels and alloys. ITAS Bull. Indian Therm. Anal. Soc. 4(2), 10–22 (2011)

    Google Scholar 

  25. R.C. Robartson, Conceptual Design Study of A Single-fluid Molten-salt Breeder Reactor. ORNL Report (ORNL-4541) (1971)

    Google Scholar 

  26. A. Basak, I.V. Dulera, Fluoride Salts Requirements for Indian Molten Salt Breeder Reactor. Tech. Rep. MSBR/RED/HTRS/2014/02, pp. 1–13 (2014)

    Google Scholar 

  27. R. Mishra et al., Unpublished Results

    Google Scholar 

  28. P.A. Hassan et al., Unpublished Results

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to International Thorium Energy Alliance and organizers of International Thorium Energy Conference 2015 for providing the opportunity to present this work during the conference.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Jagatap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jain, D., Das, D., Jagatap, B.N. (2019). Thorium-Based Fuels for Advanced Nuclear Reactors: Thermophysical, Thermochemical, and Thermodynamic Properties. In: Nayak, A., Sehgal, B. (eds) Thorium—Energy for the Future. Springer, Singapore. https://doi.org/10.1007/978-981-13-2658-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2658-5_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2657-8

  • Online ISBN: 978-981-13-2658-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics