Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 168 Accesses

Abstract

The study area is mainly located in the forest-steppe ecotone in northern China (Fig. 2.1) and in the marginal area of the East Asian monsoon influence. With the gradually weakening influence of the East Asian monsoon from the southeast to northwest, the temperature and precipitation in the region decrease from the southeast to northwest (Hou 1988; Zhou 1992; Qin 2005). The mean annual temperature (MAT) in the region is −2~12 °C, and the mean annual precipitation (MAP) is 150~650 mm. The climate is mainly controlled by the Siberian-Mongolian high-pressure system in winter, resulting in cold and dry environmental conditions. Warm temperatures and high humidity are caused by the prevailing Asian monsoon in summer. Variations in the soil water content have obvious seasonal changes, and the soil is usually dry from October to April and wet from May to September (Yin 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An, C., Feng, Z., Barton, L. 2006. Dry or humid? Mid-Holocene humidity changes in arid and semi-arid China. Quaternary Science Reviews, 25, 351–361.

    Article  Google Scholar 

  • Bandelt, H.J., Forster, P., Röhl, A. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37–48.

    Article  CAS  Google Scholar 

  • Collins, W.D., Bitz, C.M., Blackmon, M.L., Bonan, G.B., Bretherton, C.S., Carton, J.A., Chang, P., Doney, S.C., Hack, J.J., Henderson, T.B., Kiehl, J.T., Large, W.G., McKenna, D.S., Santer, B.D., Smith, R.D. 2006. The Community Climate System Model Version 3 (CCSM3). Journal of Climate, 19, 2122–2143.

    Article  Google Scholar 

  • Corander, J., Sirén, J., Arjas, E. 2008. Bayesian spatial modeling ofgenetic population structure. Computational Statistics, 23, 111–129.

    Article  Google Scholar 

  • De Chen, K., Abbott, R.J., Milne, R.I., Tian, X.M., Liu, J. 2008. Phylogeography of Pinus tabulaeformis Carr. (Pinaceae), a dominant species of coniferous forest in northern China. Molecular Ecology, 17, 4276–4288.

    Article  CAS  Google Scholar 

  • Deckker, P., Corrège, T., Head, J. 1991. Late Pleistocene record of cyclic eolian activity from tropical Australia suggesting the Younger Dryas is not an unusual climatic event. Geology, 19, 602–605.

    Article  Google Scholar 

  • Doyle, J.J., Doyle, J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15.

    Google Scholar 

  • Dupanloup, I., Schneider, S., Excoffier, L. 2002. A simulated annealing approach to define the genetic structure of populations. Molecular Ecology, 11, 2571–2581.

    Article  CAS  Google Scholar 

  • Dykoski, C.A., Edwards, R.L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., Revenaugh, J. 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters, 233, 71–86.

    Article  CAS  Google Scholar 

  • Elith, J., Graham, C. H., Anderson, R. P., et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151.

    Article  Google Scholar 

  • Excoffier, L., Smouse, P.E., Quattro, J.M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131, 479–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Excoffier, L., Lischer, H.E.L. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetic analyses under Linux and Windows. Molecular Ecology Resources, 10, 564–567.

    Article  Google Scholar 

  • Fawcett, T. 2006. An introduction to ROC analysis. Pattern Recognition Letters, 27, 861–874.

    Article  Google Scholar 

  • Hao, Q., Liu, H., Yin, Y., Wang, H., Feng, M. 2014. Varied responses of forest at its distribution margin to Holocene monsoon development in northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 409, 239–248.

    Article  Google Scholar 

  • Herzschuh, U. 2007. Reliability of pollen ratios for environmental reconstructions on the Tibetan Plateau. Journal of Biogeography, 34, 1265–1273.

    Article  Google Scholar 

  • Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.

    Article  Google Scholar 

  • Hou, X. 1988. Natural geography of China: Plant geography (Volume II). Beijing: Science Press.

    Google Scholar 

  • Huang, X., Chen, F., Fan, Y., Yang, M. 2009. Dry late-glacial and early Holocene climate in arid central Asia indicated by lithological and palynological evidence from Bosten Lake, China. Quaternary International, 194, 19–27.

    Article  Google Scholar 

  • Hu, C., Henderson, G.M., Huang, J., Xie, S., Sun, Y., Johnson, K.R. 2008. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth and Planetary Science Letters, 266, 221–232.

    Article  CAS  Google Scholar 

  • Kernan, M., Battarbee, R.W., and Moss, B. 2010. Climate change impacts on freshwater ecosystems, Wiley Online Library.

    Google Scholar 

  • Liang, E., D. Eckstein. 2006. Light rings in Chinese pine (Pinus tabulaeformis) in semiarid areas of north China and their palaeo-climatological potential. New Phytologist, 171, 783–791.

    Article  Google Scholar 

  • Liu, H., Cui, H., Huang, Y. 2001. Detecting Holocene movements of the woodland–steppe ecotone in northern China using discriminant analysis. Journal of Quaternary Science, 16, 237–244.

    Article  CAS  Google Scholar 

  • Liu, H., Cui, H., Yu, P., Huang, Y. 2002a. The origin of remnant forest stands of Pinus tabulaeformis in southeastern Inner Mongolia. Plant Ecology, 158, 139–151.

    Article  Google Scholar 

  • Liu, H., Xu, L., Cui, H. 2002b. Holocene history of desertification along the woodland-steppe border in northern China. Quaternary Research, 57, 259–270.

    Article  Google Scholar 

  • Liu, H., Yin, Y., Zhu, J., Zhao, F., Wang, H. 2010. How did the forest respond to Holocene climate drying at the forest-steppe ecotone in northern China? Quaternary International, 227, 46–52.

    Article  Google Scholar 

  • Liu, Y., H. W. Linderholm, H. Song, Q. Cai, Q. Tian, J. Sun, D. Chen, E. Simelton, K. Seftigen, H. Tian. 2009. Temperature variations recorded in Pinus tabulaeformis tree rings from the southern and northern slopes of the central Qinling Mountains, central China. Boreas, 38, 285–291.

    Article  Google Scholar 

  • Lu, G., Moriyama, E.N. 2004. Vector NTI, a balanced all-in-one sequence analysis suite. Briefings in Bioinformatics, 5, 378–388.

    Article  CAS  Google Scholar 

  • Maher, L.J., 1981. Statistics for microfossil concentration measurements employing samples spiked with marker grains. Review of Palaeobotany and Palynology, 32, 153–191.

    Article  Google Scholar 

  • Mao, J.-F., Wang, X.-R. 2011. Distinct Niche Divergence Characterizes the Homoploid Hybrid Speciation of Pinus densata on the Tibetan Plateau. The American Naturalist, 177, 424–439.

    Article  Google Scholar 

  • Miller, M.P. 2005. Alleles In Space (AIS): Computer Software for the Joint Analysis of Interindividual Spatial and Genetic Information. Journal of Heredity, 96, 722–724.

    Article  CAS  Google Scholar 

  • Moore, P.D., Webb, J.A., Collison, M. 1991. Pollen analysis. Blackwell Scientific Publications, Oxford, UK.

    Google Scholar 

  • O’Reilly, C.M., Alin, S.R., Plisnier, P.D., Cohen, A.S., McKee, B.A. 2003. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature, 424, 766–768.

    Article  Google Scholar 

  • Phillips, S.J., Anderson, R.P., Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.

    Article  Google Scholar 

  • Pons, O., Petit, R. 1996. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics, 144, 1237–1245.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Porter, S.C., An, Z. 1995. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature, 375, 305–308.

    Article  CAS  Google Scholar 

  • Qiang, M., Chen, F., Zhang, J., Zu, R., Jin, M., Zhou, A., Xiao, S. 2007. Grain size in sediments from Lake Sugan: a possible linkage to dust storm events at the northern margin of the Qinghai-Tibetan Plateau. Environmental Geology, 51, 1229–1238.

    Article  CAS  Google Scholar 

  • Qin, D. 2005. Climate and environmental evolution of China: The evolution and prediction of climate and environment. Beijing: Science Press.

    Google Scholar 

  • Reimer, P.J., Bard, E., Bayliss, A., et al. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 cal years BP. Radiocarbon, 55, 1869–1887.

    Article  CAS  Google Scholar 

  • Rosén, P. 2005. Total organic carbon (TOC) of lake water during the Holocene inferred from lake sediments and near-infrared spectroscopy (NIRS) in eight lakes from northern Sweden. Biogeochemistry, 76, 503–516.

    Article  Google Scholar 

  • Rosén, P., Hammarlund, D. 2007. Effects of climate, fire and vegetation development on Holocene changes in total organic carbon concentration in three boreal forest lakes in northern Sweden. Biogeosciences, 4, 975–984.

    Article  Google Scholar 

  • Shao, X., Wang, Y., Cheng, H., Kong, X., Wu, J., Edwards, R.L. 2006. Long-term trend and abrupt events of the Holocene Asian monsoon inferred from a stalagmite δ18O record from Shennongjia in Central China. Chinese Science Bulletin, 51, 221–228.

    Article  CAS  Google Scholar 

  • Shi, J., Liu, Y., Vaganov, E.A., Li, J., Cai, Q. 2008. Statistical and process-based modeling analyses of tree growth response to climate in semi-arid area of north central China: A case study of Pinus tabulaeformis. Journal of Geophysical Research: Biogeosciences, 113, 2005–2012.

    Google Scholar 

  • Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, C., Hughen, K.A., Kromer, B., McCormac, G., Plicht, J.v.d., Spurk, M. 1998. INTCAL98 Radiocarbon Age Calibration, 24,000–0 cal BP. Radiocarbon. International Journal of Cosmogenic Isotope Research, 40, 1041–1084.

    Article  CAS  Google Scholar 

  • Wang, Y., Cheng, H., Edwards, R., He, Y., Kong, X., An, Z., Wu, J., Kelly, M., Dykoski, C., Li, X. 2005. The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science, 308, 854.

    Article  CAS  Google Scholar 

  • Wang, Y., Cheng, H., Edwards, R.L., Kong, X., Shao, X., Chen, S., Wu, J., Jiang, X., Wang, X., An, Z. 2008. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451, 1090–1093.

    Article  CAS  Google Scholar 

  • Wang, H., Liu, H., Zhao, F., Yin, Y., Zhu, J., Snowball, I. 2012. Early- and mid-Holocene palaeoenvironments as revealed by mineral magnetic, geochemical and palynological data of sediments from Bai Nuur and Ulan Nuur, southeastern inner Mongolia Plateau, China. Quaternary International, 250, 100–118.

    Google Scholar 

  • Williams, J.W., Shuman, B., Bartlein, P.J. 2009. Rapid responses of the prairie-forest ecotone to early Holocene aridity in mid-continental North America. Global and Planetary Change, 66, 195–207.

    Article  Google Scholar 

  • Wu, Y., Lücke, A., Zhangdong, J., Sumin, W., Schleser, G.H., Battarbee, R.W., Weilan, X. 2006. Holocene climate development on the central Tibetan Plateau: a sedimentary record from Cuoe Lake. Palaeogeography, Palaeoclimatology, Palaeoecology, 234, 328–340.

    Article  Google Scholar 

  • Wu, Z. 1980. The vegetation of China. Beijing: Science Press.

    Google Scholar 

  • Xiao, J., Wu, J., Si, B., Liang, W., Nakamura, T., Liu, B., Inouchi, Y. 2006. Holocene climate changes in the monsoon/arid transition reflected by carbon concentration in Daihai Lake of Inner Mongolia. The Holocene, 16, 551–560.

    Article  Google Scholar 

  • Xu, H. 1990. Pinus tabuliformis Carrière. Beijing: China Forestry Publishing House.

    Google Scholar 

  • Yin, Y. 2012. Holocene forest evolution and its driving factors in semi-humid and semi-arid regions of China. Thesis for Ph.D. degree of Peking University.

    Google Scholar 

  • Yin, Y., Liu, H., Hao, Q. 2015. The role of fire in the late Holocene forest decline in semi-arid North China. The Holocene, 26, 93–101.

    Article  Google Scholar 

  • Yin, Y., Liu, H., He, S., Zhao, F., Zhu, J., Wang, H., Liu, G., Wu, X. 2011. Patterns of local and regional grain size distribution and their application to Holocene climate reconstruction in semi-arid Inner Mongolia, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 307, 168–176.

    Article  Google Scholar 

  • Yin, Y., Liu, H., Liu, G., Hao, Q., Wang, H. 2012. Vegetation responses to mid-Holocene extreme drought events and subsequent long-term drought on the southeastern Inner Mongolian Plateau, China. Agricultural and Forest Meteorology, 178–179, 3–9.

    Google Scholar 

  • Zhai, Q.M., Guo, Z.Y., Li, Y.L., Li, R.Q., 2006. Annually laminated lake sediments and environmental changes in Bashang Plateau, North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 241, 95–102.

    Article  Google Scholar 

  • Zhao, Y., Yu, Z. 2012. Vegetation response to Holocene climate change in East Asian monsoon-margin region. Earth-Science Reviews, 113, 1–10.

    Article  CAS  Google Scholar 

  • Zhao, Y., Yu, Z., Chen, F. 2009. Spatial and temporal patterns of Holocene vegetation and climate changes in arid and semi-arid China. Quaternary International, 194, 6–18.

    Article  Google Scholar 

  • Zhao, Y., Yu, Z., Chen, F., Ito, E., Zhao, C. 2007. Holocene vegetation and climate history at Hurleg Lake in the Qaidam Basin, northwest China. Review of Palaeobotany and Palynology, 145, 275–288.

    Article  Google Scholar 

  • Zhou, T. 1992. Holocene environmental evolution and prediction in the transition agriculture-animal husbandry zone of north China. Beijing: Geological Publishing House.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hao, Q. (2018). Research Area and Research Methods. In: The LGM Distribution of Dominant Tree Genera in Northern China's Forest-steppe Ecotone and Their Postglacial Migration. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-2883-1_2

Download citation

Publish with us

Policies and ethics