Skip to main content

Metalloxane Cage Compounds as an Element-Block

  • Chapter
  • First Online:
New Polymeric Materials Based on Element-Blocks
  • 613 Accesses

Abstract

A titanium phosphonate cluster with a formula of [Ti43-O)(OiPr)5(μ-OiPr)3(PhPO3)3]·thf was synthesized by the reaction of titanium tetraisopropoxide with phenylphosphonic acid in tetrahydrofuran and the following hydrolysis. The titanium cluster phosphonate was mixed with poly(dimethylsiloxane) (PDMS), poly(methylsilsesquioxane), poly(ethoxysilsesquioxane), poly(methyl methacrylate) (PMMA), poly(vinyl alcohol) (PVA), poly(4-vinylphenol), poly(styrene-co-allyl alcohol), or poly(bisphenol A-co-epichlorohydrin) to form a hybrid film. The mechanical strengths and strains of PDMS hybrids were very low. The tensile strengths and elongations of PMMA hybrids increased with the increase in the titanium cluster concentration. The tensile strengths and elongations of PVA hybrids were highest when the titanium cluster concentration was 10 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chujo Y, Tanaka K (2015) New polymer materials based on element–blocks. Bull Chem Soc Jpn 88:633–643

    Article  CAS  Google Scholar 

  2. Kanezashi M, Shioda T, Gunji T, Tsuru T (2012) Gas permeation properties of silica membranes with uniform pore sizes derived from polyhedral oligomeric silsesquioxane. AICHE J 58:1733–1743

    Article  CAS  Google Scholar 

  3. Tanaka K, Yamane H, Mitamura K, Watase S, Matsukawa K, Chujo Y (2014) Transformation of sulfur to organic–inorganic hybrids employed by networks and their application for the modulation of refractive indices. J Polym Sci Part A Polym Chem 52:2588–2595

    Article  CAS  Google Scholar 

  4. Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110:2081–2173

    Article  CAS  Google Scholar 

  5. Bradley DC, Mehrotra RC, Rothwell IP, Singh A (2001) Alkoxo and aryloxo derivatives of metals. Academic, San Diego

    Google Scholar 

  6. Schubert U (2004) Organofunctional metal oxide clusters as building blocks for inorganic-organic hybrid materials. J Sol-Gel Sci Techn 31:19–24

    Article  CAS  Google Scholar 

  7. Rozes L, Steunou N, Fornasieri G, Sanchez C (2006) Titanium-oxo clusters, versatile nanobuilding blocks for the design of advanced hybrid materials. Monatsh Chem 137:501–528

    Article  CAS  Google Scholar 

  8. Gross S (2011) Oxocluster-reinforced organic–inorganic hybrid materials: effect of transition metal oxoclusters on structural and functional properties. J Mater Chem 21:15853–15861

    Article  CAS  Google Scholar 

  9. Schubert U (2011) Cluster-based inorganic–organic hybrid materials. Chem Soc Rev 40:575–582

    Article  CAS  Google Scholar 

  10. Kickelbick G (2006) Hybrid materials. Wiley VCH, Weinheim

    Book  Google Scholar 

  11. Guerrero G, Mutin PH, Vioux A (2000) Mixed nonhydrolytic/hydrolytic sol−gel routes to novel metal oxide/phosphonate hybrids. Chem Mater 12:1268–1272

    Article  CAS  Google Scholar 

  12. Guerrero G, Mehring M, Mutin PH, Dahan F, Vioux A (1999) Syntheses and single-crystal structures of novel soluble phosphonate- and phosphinato-bridged titanium oxo alkoxides. J Chem Soc Dalton Trans:1537–1538

    Google Scholar 

  13. Mehring M, Guerrero G, Dahan F, Mutin PH, Vioux A (2000) Syntheses, characterizations, and single-crystal x-ray structures of soluble titanium alkoxide phosphonates. Inorg Chem 39:3325–3332

    Article  CAS  Google Scholar 

  14. Czakler M, Artner C, Schubert U (2013) Influence of the phosphonate ligand on the structure of phosphonate-substituted titanium oxo clusters. Eur J Inorg Chem:5790–5796

    Article  CAS  Google Scholar 

  15. Czakler M, Artner C, Schubert U (2014) Acetic acid mediated synthesis of phosphonate-substituted titanium Oxo clusters. Eur J Inorg Chem 2014:2038–2045

    Article  CAS  Google Scholar 

  16. Czakler M, Artner C, Schubert U (2015) Titanium oxo/alkoxo clusters with both phosphonate and methacrylate ligands. Monatsh Chem 146:1249–1256

    Article  CAS  Google Scholar 

  17. Kalita L, Kalita AC, Murugavel R (2014) Organotitanium phosphates with free P–OH groups: synthesis, spectroscopy and solid state structures. J Organomet Chem 751:555–562

    Article  CAS  Google Scholar 

  18. Sheldrick GM (1996) SADABS, program for Siemens area detector absorption correction. University of Göttingen, Germany

    Google Scholar 

  19. Sheldrick GM (1997) SHELXS-97, program for crystal structure solution. University of Göttingen, Germany

    Google Scholar 

  20. Armarego WLF, Chai C (2012) Purification of laboratory chemicals, 7th edn. Elsevier, Oxford

    Google Scholar 

  21. Otsuka T, Chujo Y (2010) Poly(methyl methacrylate) (PMMA)-based hybrid materials with reactive zirconium oxide nanocrystals. Polym J 42:58–65

    Article  CAS  Google Scholar 

  22. Julián B, Gervais C, Cordoncillo E, Escribano P, Babonneau F, Sanchez C (2003) Synthesis and characterization of transparent PDMS-metal-oxo based organic–inorganic nanocomposites. Chem Mater 15:3026–3034

    Article  Google Scholar 

  23. Hayami R, Wada K, Sagawa T, Tsukada S, Watase S, Gunji T (2017) Preparation and properties of organic-inorganic hybrid polymer films using [Ti4(μ 3-O)(OiPr)5(μ-OiPr)3(O3PPh)3]·thf. Polym J 49:223–228

    Article  CAS  Google Scholar 

  24. Guńko VM, Borysenko MV, Pissis P, Spanoudaki A, Shinyashiki N, Sulim IY, Kulik TV, Palyanytsya BB (2007) Polydimethylsiloxane at the interfaces of fumed silica and zirconia/fumed silica. Appl Surf Sci 253:7143–7156

    Article  Google Scholar 

  25. Adachi K, Hirano T (2008) Good linear relationship between logarithms of Eigen’s water exchange constants for several divalent metal ions and activation energies of corresponding metal-catalyzed alkoxysilane hydrolysis in ethylene-propylene copolymer system. Eur Polym J 44:542–549

    Article  CAS  Google Scholar 

  26. Svetich GW, Voge AA (1972) The crystal and molecular structure of sym-trans-di-μ-phenoxyhexaphenoxydiphenolatodititanium (IV). Acta Crystallogr B 28:1760

    Article  CAS  Google Scholar 

  27. Glaser RH, Wilkes GL (1988) Structure property behavior of polydimethylsiloxane and poly(tetramethylene oxide) modified TEOS based sol-gel materials V. effect of titaniumisopropoxide incorporation. Polym Bull 19:51–57

    Article  CAS  Google Scholar 

  28. Liu M, Sun J, Sun Y, Bock C, Chen Q (2009) Thickness-dependent mechanical properties of polydimethylsiloxane membranes. J Micromech Microeng 19:35028–35031. https://doi.org/10.1088/0960-1317/19/3/035028

    Article  CAS  Google Scholar 

  29. Lee DC, Jang LW (1996) Preparation and characterization of PMMA–clay hybrid composite by emulsion polymerization. J Appl Polym Sci 61:1117–1122

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “New Polymeric Materials Based on Element-Blocks (No.2401)” (JSPS KAKENHI Grant Number JP24102008). This work was supported by JSPS KAKENHI Grant Number JP16K17951.

Shinji Ogihara, Ryuta Kitamura, and Ryosuke Matsuzaki are greatly acknowledged for their technical assistance in the tensile strength measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Gunji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gunji, T., Tsukada, S. (2019). Metalloxane Cage Compounds as an Element-Block. In: Chujo, Y. (eds) New Polymeric Materials Based on Element-Blocks. Springer, Singapore. https://doi.org/10.1007/978-981-13-2889-3_12

Download citation

Publish with us

Policies and ethics