Skip to main content

Phenology and Photosynthetic Physiology of Jatropha curcas L. Grown Under Elevated Atmospheric Carbon Dioxide in a Semiarid Environment

  • Chapter
  • First Online:
Jatropha, Challenges for a New Energy Crop

Abstract

Climate change at the global scale has emphasized the need for identifying plants with stable productivity under unfavorable abiotic conditions. Jatropha curcas is a fast-growing species that thrives with minimum inputs, demonstrates drought tolerance, and has gained worldwide attention as an oilseed suitable for alternative fuel. However, there is limited knowledge on its phenological and physiological behavior under different geographical realms, which imperatively need to be understood before any selective breeding for growth and productivity can be initiated in a particular geographical region. In this chapter, we present a comprehensive information with systematical experimentation on growth and photosynthetic physiology of J. curcas with particular emphasis on elevated CO2 concentration in semiarid conditions. Furthermore, the morphophysiological status is elaborated in the context of photosynthetic efficiency, source-sink interaction, and reproductive phenology in Jatropha grown under CO2-enriched atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. New Phytol 165:351–371

    Article  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  CAS  Google Scholar 

  • Bailis R, McCarthy (2011) Carbon impacts of direct land use change in semiarid woodlands converted to biofuel plantations in India and Brazil. GCB Bioenergy 3:449–460

    Article  Google Scholar 

  • Brittaine R, Lutaladio N (2010) Jatropha: a smallholder bioenergy crop. In: Integrated crop management: the potential for pro-poor development, vol 8. FAO, Rome, pp 27–53

    Google Scholar 

  • Chen C, Setter TL (2012) Response of potato dry matter assimilation and partitioning to elevated CO2 at various stages of tuber initiation and growth. Environ Exp Bot 80:27–34

    Article  CAS  Google Scholar 

  • Dillen SY, Rood SB, Ceulemans R (2010) Growth and physiology. In: Jansson S, Bhalerao R, Groover A (eds) Genetics and genomics of Populus. Plant genetics and genomics: crops and models, vol 8. Springer, New York, pp 39–63

    Chapter  Google Scholar 

  • Divakara BN, Upadhyaya HD, Wani SP et al (2010) Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energy 87:732–742

    Article  CAS  Google Scholar 

  • Fairless D (2007) Biofuel: the little shrub that could-maybe. Nature 449:652–655

    Article  Google Scholar 

  • Gour VK (2006) Production practices including post-harvest management of Jatropha curcas. In: Singh B, Swaminathan R, Ponraj V (eds) Biodiesel conference towards energy independence – focus on Jatropha. Rashtrapati Nilayam, Bolaram, pp 223–251

    Google Scholar 

  • Hamilton EW, Heckathorn SA, Joshi P et al (2008) Interactive effects of elevated CO2 and growth temperature on the tolerance of photosynthesis to acute heat stress in C3 and C4 species. J Integr Plant Biol 50:1375–1387

    Article  CAS  Google Scholar 

  • Heller J (1996) Physic nut, Jatropha curcas L. In: Promoting the conservation and use of underutilized and neglected crops. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Herrick JD, Maherali H, Thomas RB (2004) Reduced stomatal conductance in sweetgum (Liquidambar styraciflua) sustained over long-term CO2 enrichment. New Phytol 162:387–396

    Article  Google Scholar 

  • Högy P, Fangmeier A (2009) Atmospheric CO2 enrichment affects potatoes: above ground biomass production and tuber yield. Eur J Agron 30:78–84

    Article  Google Scholar 

  • Idso SB, Kimball BA, Shaw PE et al (2002) The effect of elevated atmospheric CO2 on the vitamin C concentration of (sour) orange juice. Agric Ecosyst Environ 90:1–7

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2014) Pachauri RK, Meyer LA (eds) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the IPCC, Geneva, p 151

    Google Scholar 

  • Kimball BA (2016) Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr Opin Plant Biol 31:36–43

    Article  CAS  Google Scholar 

  • Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411

    Article  Google Scholar 

  • Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): a review. Ind Crop Prod 28:1–10

    Article  CAS  Google Scholar 

  • Kumar A, Tewari SK (2015) Origin, distribution, ethnobotany and pharmacology of Jatropha curcas. Res J Med Plant 9:48–59

    Article  Google Scholar 

  • Kumar S, Chaitanya BSK, Ghatty S et al (2014) Growth, reproductive phenology and yield responses of a potential biofuel plant, Jatropha curcas grown under projected 2050 levels of elevated CO2. Physiol Plant 152:501–519

    Article  CAS  Google Scholar 

  • Kumar S, Sreeharsha RV, Mudalkar S et al (2017) Molecular insights into photosynthesis and carbohydrate metabolism in Jatropha curcas grown under elevated CO2 using transcriptome sequencing and assembly. Sci Rep 7:11066

    Article  Google Scholar 

  • Leakey ADB, Bernacchi CJ, Ort DR et al (2006) Long term growth of soybean at elevated [CO2] does not cause acclimation of stomatal conductance under fully open-air conditions. Plant Cell Environ 29:1794–1800

    Article  CAS  Google Scholar 

  • Leakey ADB, Ainsworth EA, Bernacchi CJ et al (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876

    Article  CAS  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A et al (2004) Rising atmospheric carbon dioxide: plants face the future. Ann Rev Plant Biol 55:591–628

    Article  CAS  Google Scholar 

  • Maes WH, Achten WMJ, Reubens B et al (2009) Plant–water relationships and growth strategies of Jatropha curcas L. seedlings under different levels of drought stress. J Arid Environ 73:877–884

    Article  Google Scholar 

  • Mehran A, AghaKouchak A, Nakhjiri N et al (2017) Compounding impacts of human-induced water stress and climate change on water availability. Sci Rep 7:6282

    Article  Google Scholar 

  • Moore BD, Cheng SH, Sims D et al (1999) The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ 22:567–582

    Article  CAS  Google Scholar 

  • Paoletti E, Grulke NE (2005) Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal responses. Environ Pollut 137:483–493

    Article  CAS  Google Scholar 

  • Prentice IC, Farquhar GD, Fasham MJR et al (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis, Contribution of Working Group 1 to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, pp 184–237

    Google Scholar 

  • Rasineni GK, Guha A, Reddy AR (2011a) Elevated atmospheric CO2 mitigated photoinhibition in a tropical tree species, Gmelina arborea. J Photochem Photobiol B Biol 103:159–165

    Article  CAS  Google Scholar 

  • Rasineni GK, Guha A, Reddy AR (2011b) Responses of Gmelina arborea, a tropical deciduous tree species, to elevated atmospheric CO2: growth, biomass productivity and carbon sequestration efficacy. Plant Sci 181:428–438

    Article  CAS  Google Scholar 

  • Reddy AR, Rasineni GK, Raghavendra AS (2010) The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Curr Sci India 99:46–57

    CAS  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Ann Rev Plant Biol 57:675–709

    Article  CAS  Google Scholar 

  • Roux F, Touzet P, Cuguen J et al (2006) How to be early flowering: an evolutionary perspective. Trends Plant Sci 11:375–381

    Article  CAS  Google Scholar 

  • Sapeta H, Costa JM, Lourenço T et al (2013) Drought stress response in Jatropha curcas: growth and physiology. Environ Exp Bot 85:76–84

    Article  CAS  Google Scholar 

  • Springer CJ, Ward JK (2007) Flowering time and elevated atmospheric CO2. New Phytol 176:243–255

    Article  CAS  Google Scholar 

  • Subramanian KA, Singhal SK, Saxena M et al (2005) Utilization of liquid biofuels in automotive diesel engines: an Indian perspective. Biomass Bioenergy 29:65–72

    Article  Google Scholar 

  • Tricker PJ, Trewin H, Kull O et al (2005) Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2. Oecologia 143:652–660

    Article  Google Scholar 

  • Urban O (2003) Physiological impacts of elevated CO2 concentration ranging from molecular to whole plant responses. Photosynthetica 41:9–20

    Article  CAS  Google Scholar 

  • Wang D, Heckathorn SA, Barua D et al (2008) Effects of elevated CO2 on the tolerance of photosynthesis to acute heat stress in C3, C4, and CAM species. Am J Bot 95:165–176

    Article  CAS  Google Scholar 

  • Wani SP, Chander G, Sahrawat KL et al (2012) Carbon sequestration and land rehabilitation through Jatropha curcas (L.) plantation in degraded lands. Agric Ecosyst Environ 161:112–120

    Article  CAS  Google Scholar 

  • Wittig VE, Bernacchi CJ, Zhu X-G et al (2005) Gross primary production is stimulated for three Populus species grown under free-air CO2 enrichment from planting through canopy closure. Glob Chang Biol 11:644–656

    Article  Google Scholar 

  • Wu WG, Huang JK, Deng XZ (2010) Potential land for plantation of Jatropha curcas as feedstocks for biodiesel in China. Sci China Earth Sci 53:120–127

    Article  CAS  Google Scholar 

  • Wullschleger SD, Tschaplinski TJ, Norby RJ (2002) Plant water relations at elevated CO2 – implications for water-limited environments. Plant Cell Environ 25:319–331

    Article  Google Scholar 

  • Zandalinas SI, Mittler R, Balfagón D et al (2017) Plant adaptations to the combination of drought and high temperatures. Physiol Plant 162:2–12

    Article  Google Scholar 

  • Zhang SR, Dang QL, Yu XG (2006) Nutrient and [CO2] elevation had synergistic effects on biomass production but not on biomass allocation of white birch seedlings. For Ecol Manag 234:238–244

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Mudalkar, S., Attipalli, R.R. (2019). Phenology and Photosynthetic Physiology of Jatropha curcas L. Grown Under Elevated Atmospheric Carbon Dioxide in a Semiarid Environment. In: Mulpuri, S., Carels, N., Bahadur, B. (eds) Jatropha, Challenges for a New Energy Crop. Springer, Singapore. https://doi.org/10.1007/978-981-13-3104-6_14

Download citation

Publish with us

Policies and ethics