Skip to main content

Membrane Technologies for the Treatment of Pharmaceutical Industry Wastewater

  • Chapter
  • First Online:
Water and Wastewater Treatment Technologies

Abstract

In course of past few years, pharmaceutical industries have huge contribution in the economic development of the country, but concurrently the pharmaceutical pollutants can also be responsible for severe hazards to the environment. Traditional methods of wastewater treatment cannot erase these pollutants from the water due to their hostile behavior. The advent of the pharmaceutical pollutants leads a demand for assessment and depiction of the wastewater discharged from the pharmaceutical industry as per the norms recommended by the official agency (Pollution Control Board). Vast number of treatment strategies are adapted by the pharmaceutical industries to reuse wastewater and regulate environmental pollution. In this chapter, we mainly focus on the finest membrane based methodologies to abolish the pharmaceutical compounds. At present, no individual technology has the potential to expel out the pharmaceutical pollutants from wastewater. Merging of traditional methods with membrane reactors leads to the best hybrid wastewater treatment technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams C, Wang Y, Loftin K, Meyer M (2002) Removal of antibiotics from surface and distilled water in conventional water treatment processes. J Environ Eng 128(3):253–260

    Article  CAS  Google Scholar 

  • Adham S, Chiu KP, Gramith K, Oppenheimer J (2005) Development of a microfiltration and ultrafiltration knowledge base. AWWA Research Foundation, Denver, Colorado

    Google Scholar 

  • Amy G, Kim TU, Yoon J, Bellona C, Drewes J, Pellegrino J, Heberer T (2005) Removal of micropollutants by NF/RO membranes. Water Sci Technol Water Supply 5(5):25–33

    Article  CAS  Google Scholar 

  • Aydin S (2016) Enhanced biodegradation of antibiotic combinations via the sequential treatment of the sludge resulting from pharmaceutical wastewater treatment using white-rot fungi Trametes versicolor and Bjerkandera adusta. Appl Microbiol Biotechnol 100(14):6491–6499

    Article  CAS  Google Scholar 

  • Bellona C, Drewes JE, Xu P, Amy G (2004) Factors affecting the rejection of organic solutes during NF/RO treatment—a literature review. Water Res 38(12):2795–2809

    Article  CAS  Google Scholar 

  • Braeken L, Ramaekers R, Zhang Y, Maes G, Van der Bruggen B, Vandecasteele C (2005) Influence of hydrophobicity on retention in nanofiltration of aqueous solutions containing organic compounds. J Membr Sci 252(1–2):195–203

    Article  CAS  Google Scholar 

  • Cetecioglu Z, Ince B, Gros M, Rodriguez-Mozaz S, Barceló D, Ince O, Orhon D (2015) Biodegradation and reversible inhibitory impact of sulfamethoxazole on the utilization of volatile fatty acids during anaerobic treatment of pharmaceutical industry wastewater. Sci Total Environ 536:667–674

    Article  CAS  Google Scholar 

  • Chen Z, Ren N, Wang A, Zhang ZP, Shi Y (2008) A novel application of TPAD–MBR system to the pilot treatment of chemical synthesis-based pharmaceutical wastewater. Water Res 42(13):3385–3392

    Article  CAS  Google Scholar 

  • Cicek N (2003) A review of membrane bioreactors and their potential application in the treatment of agricultural wastewater. Can Biosyst Eng 45:6–37

    Google Scholar 

  • Deegan AM, Shaik B, Nolan K, Urell K, Oelgemöller M, Tobin J, Morrissey A (2011) Treatment options for wastewater effluents from pharmaceutical companies. Int J Environ Sci Technol 8(3):649–666

    Article  CAS  Google Scholar 

  • Ganiyu SO, van Hullebusch ED, Cretin M, Esposito G, Oturan MA (2015) Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: a critical review. Sep Purif Technol 156:891–914

    Article  CAS  Google Scholar 

  • Grandclément C, Seyssiecq I, Piram A, Wong-Wah-Chung P, Vanot G, Tiliacos N, Roche N, Doumenq P (2017) From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: a review. Water research, 111:297–317

    Article  Google Scholar 

  • Gryta M (2012) Effectiveness of water desalination by membrane distillation process. Membranes 2(3):415–429

    Article  CAS  Google Scholar 

  • Hausmann A, Sanciolo P, Vasiljevic T, Ponnampalam E, Quispe-Chavez N, Weeks M, Duke M (2011) Direct contact membrane distillation of dairy process streams. Membranes 1(1):48–58

    Article  CAS  Google Scholar 

  • Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131(1–2):5–17

    Article  CAS  Google Scholar 

  • Hena S, Znad H (2018) Membrane bioreactor for pharmaceuticals and personal care products removal from wastewater. In: Comprehensive analytical chemistry, vol 81. Elsevier, pp 201–256

    Google Scholar 

  • Hu H, Jiang C, Ma H, Ding L, Geng J, Xu K, Huang H, Ren H (2017) Removal characteristics of DON in pharmaceutical wastewater and its influence on the N-nitrosodimethylamine formation potential and acute toxicity of DOM. Water research 109:114–121

    Article  CAS  Google Scholar 

  • Ince BK, Selcuk A, Ince O (2002) Effect of a chemical synthesis-based pharmaceutical wastewater on performance, acetoclastic methanogenic activity and microbial population in an upflow anaerobic filter. J Chem Technol Biotechnol 77(6):711–719

    Article  CAS  Google Scholar 

  • Jayasiri HB, Purushothaman CS, Vennila A (2013) Pharmaceutically active compounds (PhACs): a threat for aquatic environment. National aquatic resources research and development agency, Crow Island, Å ri Lanka

    Google Scholar 

  • Judd SJ (2016) The status of industrial and municipal effluent treatment with membrane bioreactor technology. Chem Eng J 305:37–45

    Article  CAS  Google Scholar 

  • Kim JH, Park PK, Lee CH, Kwon HH (2008a) Surface modification of nanofiltration membranes to improve the removal of organic micro-pollutants (EDCs and PhACs) in drinking water treatment: graft polymerization and cross-linking followed by functional group substitution. J Membr Sci 321(2):190–198

    Article  CAS  Google Scholar 

  • Kim JH, Park PK, Lee CH, Kwon HH, Lee S (2008b) A novel hybrid system for the removal of endocrine disrupting chemicals: nanofiltration and homogeneous catalytic oxidation. J Membr Sci 312(1–2):66–75

    Article  CAS  Google Scholar 

  • Kimura K, Amy G, Drewes JE, Heberer T, Kim TU, Watanabe Y (2003) Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. J Membr Sci 227(1–2):113–121

    Article  CAS  Google Scholar 

  • Kimura K, Hara H, Watanabe Y (2005) Removal of pharmaceutical compounds by submerged membrane bioreactors (MBRs). Desalination 178(1–3):135–140

    Article  CAS  Google Scholar 

  • Lee J, Lee BC, Ra JS, Cho J, Kim IS, Chang NI, Kim KH, Kim SD (2008) Comparison of the removal efficiency of endocrine disrupting compounds in pilot scale sewage treatment processes. Chemosphere, 71(8):1582–1592

    Article  CAS  Google Scholar 

  • Li ZH, Randak T (2009) Residual pharmaceutically active compounds (PhACs) in aquatic environment–status, toxicity and kinetics: a review. Vet Med 52(7):295–314

    Article  Google Scholar 

  • Linares RV, Yangali-Quintanilla V, Li Z, Amy G (2011) Rejection of micropollutants by clean and fouled forward osmosis membrane. Water Res 45(20):6737–6744

    Article  CAS  Google Scholar 

  • Martina Hamingerova LB, Beckmann M (2010) Membrane technologies for water and wastewater treatment on the european and indian market. Technical Report, Fraunhofer Center for International Management and Knowledge Economy, 37pp

    Google Scholar 

  • Meng F, Zhang S, Oh Y, Zhou Z, Shin HS, Chae SR (2017) Fouling in membrane bioreactors: an updated review. Water Res 114:151–180

    Article  CAS  Google Scholar 

  • Nghiem LD, Schäfer AI, Elimelech M (2005) Pharmaceutical retention mechanisms by nanofiltration membranes. Environ Sci Technol 39(19):7698–7705

    Article  CAS  Google Scholar 

  • Radjenovic J, Petrovic M, Barceló D (2007) Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Anal Bioanal Chem 387(4):1365–1377

    Article  CAS  Google Scholar 

  • Radjenović J, Petrović M, Ventura F, Barceló D (2008) Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res 42(14):3601–3610

    Article  Google Scholar 

  • Rodriguez C, Van Buynder P, Lugg R, Blair P, Devine B, Cook A, Weinstein P (2009) Indirect potable reuse: a sustainable water supply alternative. Int J Environ Res Public Health 6(3):1174–1203

    Article  CAS  Google Scholar 

  • Shahtalebi A, Sarrafzadeh MH, Rahmati MM (2011) Application of nanofiltration membrane in the separation of amoxicillin from pharmaceutical wastewater. Iran J Environ Health Sci Eng 8(2):109

    CAS  Google Scholar 

  • Shi X, Lefebvre O, Ng KK, Ng HY (2014) Sequential anaerobic–aerobic treatment of pharmaceutical wastewater with high salinity. Biores Technol 153:79–86

    Article  CAS  Google Scholar 

  • Shi X, Ng KK, Li XR, Ng HY (2015) Investigation of intertidal wetland sediment as a novel inoculation source for anaerobic saline wastewater treatment. Environ Sci Technol 49(10):6231–6239

    Article  CAS  Google Scholar 

  • Simon A, Nghiem LD, Le-Clech P, Khan SJ, Drewes JE (2009) Effects of membrane degradation on the removal of pharmaceutically active compounds (PhACs) by NF/RO filtration processes. J Membr Sci 340(1–2):16–25

    Article  CAS  Google Scholar 

  • Sipma J, Osuna B, Collado N, Monclús H, Ferrero G, Comas J, Rodriguez-Roda I (2010) Comparison of removal of pharmaceuticals in MBR and activated sludge systems. Desalination 250(2):653–659

    Article  CAS  Google Scholar 

  • Snyder SA, Adham S, Redding AM, Cannon FS, DeCarolis J, Oppenheimer J, Wert EC, Yoon Y (2007) Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202(1–3):156–181

    Article  CAS  Google Scholar 

  • Sun M, Gan SX, Yin DF, Liu HY, Yang WD (2000) Application of nanofiltration membrane in the purification process of tylosin. Chin. J. Antibiot 25:172–174

    CAS  Google Scholar 

  • Tadkaew N, Hai FI, McDonald JA, Khan SJ, Nghiem LD (2011) Removal of trace organics by MBR treatment: the role of molecular properties. Water Res 45(8):2439–2451

    Article  CAS  Google Scholar 

  • Taheran M, Brar SK, Verma M, Surampalli RY, Zhang TC, Valéro JR (2016) Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters. Sci Total Environ 547:60–77

    Article  CAS  Google Scholar 

  • Tambosi JL, de Sena RF, Favier M, Gebhardt W, José HJ, Schröder HF, Moreira RDFPM (2010) Removal of pharmaceutical compounds in membrane bioreactors (MBR) applying submerged membranes. Desalination 261(1–2):148–156

    Article  CAS  Google Scholar 

  • Tchobanoglous G, Stensel HD, Tsuchihashi R, Burton F (2013) Wastewater engineering: treatment and resource recovery. 5th edn. McGraw-Hill (Metcalf & Eddy, Inc.), New York, p 2048

    Google Scholar 

  • Urase T, Sato K (2007) The effect of deterioration of nanofiltration membrane on retention of pharmaceuticals. Desalination 202(1–3):385–391

    Article  CAS  Google Scholar 

  • Urase T, Kagawa C, Kikuta T (2005) Factors affecting removal of pharmaceutical substances and estrogens in membrane separation bioreactors. Desalination 178(1–3):107–113

    Article  CAS  Google Scholar 

  • Urtiaga AM, Pérez G, Ibáñez R, Ortiz I (2013) Removal of pharmaceuticals from a WWTP secondary effluent by ultrafiltration/reverse osmosis followed by electrochemical oxidation of the RO concentrate. Desalination 331:26–34

    Article  CAS  Google Scholar 

  • Van der Bruggen B, Mänttäri M, Nyström M (2008) Drawbacks of applying nanofiltration and how to avoid them: a review. Sep Purif Technol 63(2):251–263

    Article  Google Scholar 

  • Verliefde AR, Heijman SGJ, Cornelissen ER, Amy G, Van der Bruggen B, Van Dijk JC (2007a) Influence of electrostatic interactions on the rejection with NF and assessment of the removal efficiency during NF/GAC treatment of pharmaceutically active compounds in surface water. Water Res 41(15):3227–3240

    Article  CAS  Google Scholar 

  • Verliefde A, Cornelissen E, Amy G, Van der Bruggen B, Van Dijk H (2007b) Priority organic micropollutants in water sources in Flanders and the Netherlands and assessment of removal possibilities with nanofiltration. Environ Pollut 146(1):281–289

    Article  CAS  Google Scholar 

  • Xie M, Nghiem LD, Price WE, Elimelech M (2013) Impact of humic acid fouling on membrane performance and transport of pharmaceutically active compounds in forward osmosis. Water Res 47(13):4567–4575

    Article  CAS  Google Scholar 

  • Yoon Y, Westerhoff P, Snyder SA, Wert EC (2006) Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. J Membr Sci 270(1–2):88–100

    Article  CAS  Google Scholar 

  • Yoon Y, Westerhoff P, Snyder SA, Wert EC, Yoon J (2007) Removal of endocrine disrupting compounds and pharmaceuticals by nanofiltration and ultrafiltration membranes. Desalination 202(1–3):16–23

    Article  CAS  Google Scholar 

  • Zhang W, He GH, Gao P, Chen GH (2003) Development and characterization of composite nanofiltration membranes and their application in concentration of antibiotics. Sep Purif Technol 30:27–35

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashyap Kumar Dubey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ankush, Mandal, M.K., Sharma, M., Khushboo, Pandey, S., Dubey, K.K. (2019). Membrane Technologies for the Treatment of Pharmaceutical Industry Wastewater. In: Bui, XT., Chiemchaisri, C., Fujioka, T., Varjani, S. (eds) Water and Wastewater Treatment Technologies. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3259-3_6

Download citation

Publish with us

Policies and ethics