Skip to main content

Intraoperative Neuromonitoring for the Spine

  • Chapter
  • First Online:
Textbook of Neuroanesthesia and Neurocritical Care

Abstract

Intraoperative neuromonitoring is an essential modality for ensuring safety of neurosurgical procedures of the spinal cord. Many techniques have come into regular clinical use within the last decade, and their utility recognized as guideline recommendations. This chapter will provide a broad overview of the common electrophysiological monitoring methods of the spinal cord including somatosensory evoked potentials, motor evoked potentials, spontaneous electromyography, and pedicle screw monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Møller AR. Introduction. In: Intraoperative neurophysiological monitoring. 2nd ed. New York: Springer; 2011. p. 1–6.

    Chapter  Google Scholar 

  2. Møller AR. Monitoring somatosensory evoked potentials. In: Intraoperative neurophysiological monitoring. New York: Springer; 2011. p. 93–122.

    Chapter  Google Scholar 

  3. Møller AR. Anatomy and physiology of sensory systems. In: Intraoperative neurophysiological monitoring. New York: Springer; 2011. p. 57–92.

    Chapter  Google Scholar 

  4. Nuwer MR, Dawson EG, Carlson LG, Kanim LE, Sherman JE. Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol. 1995;96:6–11.

    Article  CAS  Google Scholar 

  5. Hilibrand AS, Schwartz DM, Sethuraman V, Vaccaro AR, Albert TJ. Comparison of transcranial electric motor and somatosensory evoked potential monitoring during cervical spine surgery. J Bone Joint Surg Am. 2004;86–A:1248–53.

    Article  Google Scholar 

  6. Hadley MN, Shank CD, Rozzelle CJ, Walters BC. Guidelines for the use of electrophysiological monitoring for surgery of the human spinal column and spinal cord. Neurosurgery. 2017;81:713–32.

    PubMed  Google Scholar 

  7. Mehta AI, Mohrhaus CA, Husain AM, Karikari IO, Hughes B, Hodges T, Gottfried O, Bagley CA. Dorsal column mapping for intramedullary spinal cord tumor resection decreases dorsal column dysfunction. J Spinal Disord Tech. 2012;25:205–9.

    Article  Google Scholar 

  8. Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery. 1993;32:219–26.

    Article  CAS  Google Scholar 

  9. Møller AR. Anatomy and physiology of motor systems. In: Intraoperative neurophysiological monitoring. New York: Springer; 2011. p. 169–205.

    Chapter  Google Scholar 

  10. Shigematsu H, Kawaguchi M, Hayashi H, et al. Higher success rate with transcranial electrical stimulation of motor-evoked potentials using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery. Spine J. 2017;17:1472–9.

    Article  Google Scholar 

  11. Møller AR. Practical aspects of monitoring spinal motor systems. In: Intraoperative neurophysiological monitoring. 2nd ed. New York: Springer; 2011. p. 207–34.

    Chapter  Google Scholar 

  12. Legatt AD, Emerson RG, Epstein CM, MacDonald DB, Deletis V, Bravo RJ, López JR. ACNS Guideline. J Clin Neurophysiol. 2016;33:42–50.

    Article  Google Scholar 

  13. Lee JJ, Il KY, Hong JT, Sung JH, Lee SW, Yang SH. Intraoperative monitoring of motor-evoked potentials for supratentorial tumor surgery. J Korean Neurosurg Soc. 2014;56:98–102.

    Article  CAS  Google Scholar 

  14. Chen R, Cros D, Curra A, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol. 2008;119:504–32.

    Article  Google Scholar 

  15. Péréon Y, Tich SNT, Delécrin J, Dang CP, Bodin J, Drouet JC, Passuti N. Combined spinal cord monitoring using neurogenic mixed evoked potentials and collision techniques. Spine (Phila Pa 1976). 2002;27(14):1571–6.

    Article  Google Scholar 

  16. Sloan TB, Erian R. Effect of vecuronium-induced neuromuscular blockade on cortical motor evoked potentials. Anesthesiology. 1993;78:966–73.

    Article  CAS  Google Scholar 

  17. Kim S-H, Jin S-J, Karm M-H, Moon Y-J, Jeong H-W, Kim J-W, Ha S-I, Kim J-U. Comparison of false-negative/positive results of intraoperative evoked potential monitoring between no and partial neuromuscular blockade in patients receiving propofol/remifentanil-based anesthesia during cerebral aneurysm clipping surgery. Medicine (Baltimore). 2016;95:e4725.

    Article  CAS  Google Scholar 

  18. Journée HL, Berends HI, Kruyt MC. The percentage of amplitude decrease warning criteria for Transcranial MEP monitoring. J Clin Neurophysiol. 2017;34:22–31.

    Article  Google Scholar 

  19. MacDonald DB. Overview on criteria for MEP monitoring. J Clin Neurophysiol. 2017;34:4–11.

    Article  Google Scholar 

  20. Park J-H, Hyun S-J. Intraoperative neurophysiological monitoring in spinal surgery. World J Clin Cases. 2015;3:765–73.

    Article  Google Scholar 

  21. Lall RR, Lall RR, Hauptman JS, Munoz C, Cybulski GR, Koski T, Ganju A, Fessler RG, Smith ZA. Intraoperative neurophysiological monitoring in spine surgery: indications, efficacy, and role of the preoperative checklist. Neurosurg Focus. 2012;33:E10.

    Article  Google Scholar 

  22. Calancie B, Lebwohl N, Madsen P, Klose KJ. Intraoperative evoked EMG monitoring in an animal model. A new technique for evaluating pedicle screw placement. Spine (Phila Pa 1976). 1992;17:1229–35.

    Article  CAS  Google Scholar 

  23. Raynor BL, Lenke LG, Bridwell KH, Taylor BA, Padberg AM. Correlation between low triggered electromyographic thresholds and lumbar pedicle screw malposition. Spine (Phila Pa 1976). 2007;32:2673–8.

    Article  Google Scholar 

  24. Bosnjak R, Dolenc VV. Electrical thresholds for biomechanical response in the ankle to direct stimulation of spinal roots L4, L5, and S1. Implications for intraoperative pedicle screw testing. Spine (Phila Pa 1976). 2000;25:703–8.

    Article  CAS  Google Scholar 

  25. Parker SL, Amin AG, Farber SH, McGirt MJ, Sciubba DM, Wolinsky J-P, Bydon A, Gokaslan ZL, Witham TF. Ability of electromyographic monitoring to determine the presence of malpositioned pedicle screws in the lumbosacral spine: analysis of 2450 consecutively placed screws. J Neurosurg Spine. 2011;15:130–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakrabarti, D., Srinivas, D. (2019). Intraoperative Neuromonitoring for the Spine. In: Prabhakar, H., Ali, Z. (eds) Textbook of Neuroanesthesia and Neurocritical Care. Springer, Singapore. https://doi.org/10.1007/978-981-13-3387-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3387-3_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3386-6

  • Online ISBN: 978-981-13-3387-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics