Skip to main content

Craniocaudal Migration/Neurocristopathy

  • Chapter
  • First Online:
Hirschsprung’s Disease and the Allied Disorders

Abstract

Craniocaudal migration theory was presented as a classical pathogenesis of Hirschsprung’s disease (HD) by Okamoto and Ueda in 1967, showing that the human myenteric plexus was formed by neuroblasts which were distributed to the alimentary tract by craniocaudal direction during the fifth to the twelfth week of gestation. Later, it had long been accepted that neural crest cells (NCCs) either enter the foregut mesenchyme proximally and migrate down its length in a rostral to caudal fashion (vagal NCCs) or they enter the gut at the distal end and migrate caudal to rostral (sacral NCCs). Recently, it has been proposed that transmesenteric NCCs constituted a large part of the hindgut enteric nervous system by taking a shortcut to the colon. The maldevelopment of vagal or transmesenteric NCCs is considered to be a pathogenesis of HD. The term “neurocristopathy” was presented for a category of neural crest maldevelopment by Bolande in 1974. HD is a simple neurocristopathy. There have been reported various simple nonneoplastic and neoplastic neurocristopathies. Complex neurocristopathies associated with HD include Waardenburg syndrome type 4 (Waardenburg-Shah syndrome), neuroblastoma, multiple endocrine neoplasia type 2, congenital central hyperventilation, and others. It is important to screen an association of nonneoplastic and neoplastic neurocristopathies in patients who have a neurocristopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Okamoto E, Ueda T. Embryogenesis of intramural ganglia of the gut and its relation to Hirschsprung’s disease. J Pediatr Surg. 1967;2:437–43.

    Article  Google Scholar 

  2. Burns AJ. Migration of neural crest-derived enteric nervous system precursor cells to and within the gastrointestinal tract. Int J Dev Biol. 2005;49:143–50.

    Article  Google Scholar 

  3. Musser MA, Michelle Southard-Smith E. Balancing on the crest – evidence for disruption of the enteric ganglia via inappropriate lineage segregation and consequences for gastrointestinal function. Dev Biol. 2013;382:356–64.

    Article  CAS  Google Scholar 

  4. O’Donnell AM, Puri P. Skip segment Hirschsprung’s disease: a systematic review. Pediatr Surg Int. 2010;26:1065–9.

    Article  Google Scholar 

  5. Nishiyama C, Uesaka T, Manabe T, Yonekura Y, Nagasawa T, Newgreen DF, Young HM, Enomoto H. Trans-mesenteric neural crest cells are the principal source of the colonic enteric nervous system. Nat Neurosci. 2012;15:1211–8.

    Article  CAS  Google Scholar 

  6. Obermayr F, Hotta R, Enomoto H, Young HM. Development and developmental disorders of the enteric nervous system. Nat Rev Gastroenterol Hepatol. 2013;10:43–57.

    Article  CAS  Google Scholar 

  7. Butler Tjaden NE, Trainor PA. The developmental etiology and pathogenesis of Hirschsprung disease. Transl Res. 2013;162:1–15.

    Article  CAS  Google Scholar 

  8. Druckenbrod NR, Epstein ML. Age-dependent changes in the gut environment restrict the invasion of the hindgut by enteric neural progenitors. Development. 2009;136:3195–203.

    Article  CAS  Google Scholar 

  9. Barlow AJ, Dixon J, Dixon MJ, Trainor PA. Balancing neural crest cell intrinsic processes with those of the microenvironment in Tcof1 haploinsufficient mice enables complete enteric nervous system formation. Hum Mol Genet. 2012;21:1782–93.

    Article  CAS  Google Scholar 

  10. Bolande R. The neurocristopathies. A unifying concept of disease arising in neural crest maldevelopment. Hum Pathol. 1974;5:409–20.

    Article  Google Scholar 

  11. Horstadius S. The neural crest. Its properties and derivatives in the light of experimental methods. London: Oxford University Press; 1950. p. 1–12.

    Google Scholar 

  12. Bolande RP. Neurocristopathy: its growth and development in 20 years. Pediatr Pathol Lab Med. 1997;17:1–25.

    Article  CAS  Google Scholar 

  13. Martucciello G. Hirschsprung’s disease as a neurochristopathy. Pediatr Surg Int. 1997;12:2–10.

    Article  CAS  Google Scholar 

  14. Amiel J, Sproat-Emison E, Garcia-Barcelo M, Lantieri F, Burzynski G, Borrego S, Pelet A, Arnold S, Miao X, Griseri P, Brooks AS, Antinolo G, de Pontual L, Clement-Ziza M, Munnich A, Kashuk C, West K, Wong KK, Lyonnet S, Chakravarti A, Tam PK, Ceccherini I, Hofstra RM, Fernandez R, Hirschsprung Disease Consortium. Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet. 2008;45(1):1–14.

    Article  CAS  Google Scholar 

  15. Kniffin CL. Waardenburg syndrome, type 4A; WS4A. Online Mendelian inheritance of man. Updated: 5/24/2016; https://www.omim.org/entry/277580.

  16. Song J, Feng Y, Acke FR, Coucke P, Vleminckx K, Dhooge IJ. Hearing loss in Waardenburg syndrome: a systematic review. Clin Genet. 2016;89(4):416–25.

    Article  CAS  Google Scholar 

  17. Hansford JR, Mulligan LM. Multiple endocrine neoplasia type 2 and RET: from neoplasia to neurogenesis. J Med Genet. 2000;37:817–27.

    Article  CAS  Google Scholar 

  18. Kniffin CL. Multiple endocrine neoplasia, type IIA; MEN 2A. Online Mendelian inheritance of man. Updated: 4/3/2014; https://www.omim.org/entry/171400.

  19. Kniffin CL. Multiple endocrine neoplasia, type IIB; MEN 2B. Online Mendelian inheritance of man. Updated: 8/22/2012; https://www.omim.org/entry/162300.

  20. Kniffin CL. Thyroid carcinoma, familial medullary; MTC. Online Mendelian inheritance of man. Updated: 5/2/2006; https://www.omim.org/entry/155240.

  21. Moore SW, Zaahl M. The Hirschsprung’s-multiple endocrine neoplasia connection. Clinics. 2012;67(Suppl 1):63–7.

    Article  Google Scholar 

  22. Coyle D, Friedmacher F, Puri P. The association between Hirschsprung’s disease and multiple endocrine neoplasia type 2a: a systematic review. Pediatr Surg Int. 2014;30:751–6.

    Article  Google Scholar 

  23. Romeo G, Ceccherini I, Celli J, Priolo M, Betsos N, Bonardi G, Seri M, Yin L, Lerone M, Jasonni V, Martucciello G. Association of multiple endocrine neoplasia type 2 and Hirschsprung disease. J Intern Med. 1998;243:515–20.

    Article  CAS  Google Scholar 

  24. Rakover Y, Dharan M, Luboshitsky R. Hirschsprung’s disease associated with isolated familial medullary carcinoma of the thyroid. J Pediatr Endocrinol. 1994;7:373–7.

    CAS  PubMed  Google Scholar 

  25. Armstrong AE, Weese-Mayer DE, Mian A, Maris JM, Batra V, Gosiengfiao Y, Reichek J, Madonna MB, Bush JW, Shore RM, Walterhouse DO. Treatment of neuroblastoma in congenital central hypoventilation syndrome with a PHOX2B polyalanine repeat expansion mutation: new twist on a neurocristopathy syndrome. Pediatr Blood Cancer. 2015;62:2007–10.

    Article  CAS  Google Scholar 

  26. Haddad GG, Mazza NM, Defendini R, Blanc WA, Driscoll JM, Epstein MA, Epstein RA, Mellins RB. Congenital failure of automatic control of ventilation, gastrointestinal motility and heart rate. Medicine. 1978;57:517–26.

    Article  CAS  Google Scholar 

  27. Trang H, Dehan M, Beaufils F, Zaccaria I, Amiel J, Gaultier C, French CCHS Working Group. The French Congenital Central Hypoventilation Syndrome Registry: general data, phenotype, and genotype. Chest. 2005;127:72–9.

    Article  Google Scholar 

  28. Croaker GD, Shi E, Simpson E, Cartmill T, Cass DT. Congenital central hypoventilation syndrome and Hirschsprung’s disease. Arch Dis Child. 1998;78:316–22.

    Article  CAS  Google Scholar 

  29. Tsoutsinos A, Karanasios E, Chatzis AC. Haddad syndrome. Hell J Cardiol. 2016;57:45–7.

    Article  Google Scholar 

  30. Rohrer T, Trachsel D, Engelcke G, Hammer J. Congenital central hypoventilation syndrome associated with Hirschsprung’s disease and neuroblastoma: case of multiple neurocristopathies. Pediatr Pulmonol. 2002;33:71–6.

    Article  Google Scholar 

  31. Szymońska I, Borgenvik TL, Karlsvik TM, Halsen A, Malecki BK, Saetre SE, Jagła M, Kruczek P, Talowska AM, Drabik G, Zasada M, Malecki M. Novel mutation-deletion in the PHOX2B gene of the patient diagnosed with Neuroblastoma, Hirschsprung’s Disease, and Congenital Central Hypoventilation Syndrome (NB-HSCR-CCHS) Cluster. J Genet Syndr Gene Ther. 2015;6:269. https://doi.org/10.4172/2157-7412.1000269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroomi Okuyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kawahara, H., Okuyama, H. (2019). Craniocaudal Migration/Neurocristopathy. In: Taguchi, T., Matsufuji, H., Ieiri, S. (eds) Hirschsprung’s Disease and the Allied Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-13-3606-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3606-5_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3605-8

  • Online ISBN: 978-981-13-3606-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics