Skip to main content

Halophyte Species as a Source of Secondary Metabolites with Antioxidant Activity

  • Chapter
  • First Online:
Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes

Abstract

As naturally salt-tolerant plants, halophytes can grow in a variety of saline habitats due to the development of special adaptations, particularly secondary metabolites with antioxidant properties. Since, in order to overcome harsh environmental conditions, halophytes have the ability to produce phenolic molecules with powerful biological capacities, this interesting ecological group of plants gets more attention in recent years because of a rapid increase in demand for natural bioactive substances. Having in mind that specific conditions of saline habitats cause specific responses of biochemical pathways of plant metabolites, which is related to their biological activities, the developmental stage and yield of individual plant species together with environmental factors must be considered in further studies. In this paper, halophyte secondary metabolites with antioxidant properties were reviewed in terms of their contributions to ecophysiological adaptations. Additionally, a complete experimental screening – from plant sampling through the methodological procedure to the presentation of the obtained results – was displayed in order to enable the selection of appropriate screening method together with the proper methods of extractions and applications of obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Jaber NAA, Mujahid TG, Al-Hazmi HMG (1991) Flavonoids from Atriplex farinose. J King Saud Univ 3(2):163–167

    CAS  Google Scholar 

  • Alonso-Amelot EM, Oliveros A, Calcagno-Pisarelli PM (2004) Phenolics and condensed tannins in relation to altitude in neotropical Pteridium spp. A field study in the Venezuelan Andes. Biochem Syst Ecol 32:969–981

    Article  CAS  Google Scholar 

  • Ascensao AR, Dubery IA (2003) Soluble and wall-bound phenolics and phenolic polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f. sp. cubense. Phytochemistry 63:679–686

    Article  PubMed  CAS  Google Scholar 

  • Benhammou N, Bekkara FA, Kadifkova-Panovska T (2009) Antioxidant activity of methanolic extracts and some bioactive compounds of Atriplex halimus. C R Chim 12:1259–1266

    Article  CAS  Google Scholar 

  • Boskou D (2006) Sources of natural phenolic antioxidants. Trends Food Sci Technol 17:505–512

    Article  CAS  Google Scholar 

  • Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851

    Article  CAS  Google Scholar 

  • Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52:98–111

    Article  CAS  PubMed  Google Scholar 

  • Bunzel M, Ralph J, Steinhart H (2004) Phenolic compounds as cross-links of plant derived polysaccharides. Czech J Food Sci 22:64–67

    Article  CAS  Google Scholar 

  • Crozier A, Clifford NM, Ashihara H (2006) Plant secondary metabolites: occurrence, structure, and role in the human diet. Blackwell Publishing, Oxford

    Book  Google Scholar 

  • Cushine TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356

    Article  CAS  Google Scholar 

  • Dajic Z (2006) Salt stress e salinity and tolerance mechanisms in plants. In: Madhava Rao KV, Raghavendra AS, Reddy KJ (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, pp 41–99

    Chapter  Google Scholar 

  • Duangmano S, Dakeng S, Jiratchariyakul W, Suksamrarn A, Smith DR, Patmasiriwat P (2010) Antiproliferative effects of cucurbitacin B in breast cancer cells: down-regulation of the c-Myc/hTERT/telomerase pathway and obstruction of the cell cycle. Int J Mol Sci 11:5323–5338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faggio C, Fazio F, Marafioti S, Arfuso F, Piccione G (2015a) Oral administration of gum arabic: effects on haematological parameters and oxidative stress markers in Mugil cephalus. Iran J Fish Sci 14:60–72

    Google Scholar 

  • Faggio C, Morabito M, Minicante SA, Piano GL, Pagano M, Genovese G (2015b) Potential use of polysaccharides from the brown alga Undaria pinnatifida as anticoagulants. Braz Arch Biol Technol 58:798–804

    Article  CAS  Google Scholar 

  • Faggio C, Pagano M, Dottore A, Genovese G, Morabito M (2016) Evaluation of anticoagulant activity of two algal polysaccharides. Nat Prod Res 30:1934–1937

    Article  CAS  PubMed  Google Scholar 

  • Falleh H, Ksouri R, Medini F, Guyot S, Abdelly C, Magné C (2011) Antioxidant activity and phenolic composition of the medicinal and edible halophyte Mesembryanthemum edule L. Ind Crop Prod 34(1):1066–1071

    Article  CAS  Google Scholar 

  • Falleh H, Ksouri R, Boulaaba M, Guyot S, Abdelly C, Magné C (2012) Phenolic nature, occurrence and polymerization degree as marker of environmental adaptation in the edible halophyte Mesembryanthemum edule. South Afr J Bot 79:117–124

    Article  CAS  Google Scholar 

  • Fraga GC (ed) (2010) Plant phenolics and human health: biochemistry, nutrition, and pharmacology. Wiley, New Jersey

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gorshkova TA, Salnikov VV, Pogodina NM, Chemikosova SB, Yablokova EV, Ulanov AV, Ageeva MV, Van Dam JEG, Lazovaya VV (2000) Composition and distribution of cell wall phenolic compounds in Flax (Linum usitatissimum L.) stem tissues. Ann Bot 85:477–486

    Article  CAS  Google Scholar 

  • Gourine N, Bombarda MI, Nadjemi B, Stocker P, Gaydou EM (2010) Antioxidant activities and chemical composition of essential oil of Pistacia atlantica from Algeria. Ind Crop Prod 31:203–208

    Article  CAS  Google Scholar 

  • Hajhashemi V, Vaseghi G, Pourfarzam M, Abdollahi A (2010) Are antioxidants helpful for disease prevention? Res Pharm Sci 5:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hajlaoui H, Trabelsi N, Noumi E, Snoussi M, Fallah H, Ksouri R, Bakhrouf A (2009) Biological activities of the essential oils and methanol extract of tow cultivated mint species (Mentha longifolia and Mentha pulegium) used in the Tunisian folkloric medicine. World J Microbiol Biotechnol 25(12):2227–2238

    Article  Google Scholar 

  • Halliwell B, Rafter J, Jenner A (2005) Health promotion by flavonoids, tocopherols, tocotrienols, and other phenolics: direct or indirect effects? Antioxidant or not? Am J Clin Nutr 81:268S–276S

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad P, Azooz MM, MNV P (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87

    Chapter  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Ivanescu B, Vlase L, Corciova A, Lazar MI (2010) HPLC-DAD-MS study of polyphenols from Artemisia absinthium, A. annua and A. vulgaris. Chem Nat Compd 46:468–470

    Article  CAS  Google Scholar 

  • Jakovljević DZ, Topuzović MD, Stanković MS, Bojović BM (2017) Changes in antioxidant enzyme activity in response to salinity-induced oxidative stress during early growth of sweet basil. Hortic Environ Biotechnol 58(3):240–246

    Article  CAS  Google Scholar 

  • Jallali I, Zaouali Y, Missaoui I, Smeoui A, Abdelly C, Ksouri R (2014) Variability of antioxidant and antibacterial effects of essential oils and acetonic extracts of two edible halophytes: Crithmum maritimum L. and Inula crithmoides L. Food Chem 15(145):1031–1038

    Article  CAS  Google Scholar 

  • Jdey A, Falleh H, Jannet SB, Hammi KM, Dauvergne X, Ksouri R, Magné C (2017) Phytochemical investigation and antioxidant, antibacterial and anti-tyrosinase performances of six medicinal halophytes. S Afr J Bot 112:508–514

    Article  CAS  Google Scholar 

  • Jennings BH, Akoh CC (2009) Effectiveness of natural versus synthetic antioxidants in a rice bran oil-based structured lipid. Food Chem 114:1456–1461

    Article  CAS  Google Scholar 

  • Kang WY, Li YY, Gu XZ, Xu QT, Huang X (2011) Antioxidant activities, a-glucosidase inhibitory effect in vitro and antihyperglycemic of Trapa acornis shell in alloxan-induced diabetic rats. J Med Plant Res 5(31):6805–6812

    Google Scholar 

  • Khantamat MSO, Chaiwangyen MSW, Porn-ngarm L (2004) Screening of flavonoids for their potential inhibitory effects on p-glycoprotein activity in human cervical carcinoma kb cells. Chiang Mai Med Bull 43(2):45–56

    Google Scholar 

  • Khoo BY, Chua SL, Balaram P (2010) Apoptotic effects of chrysin in human cancer cell lines. Int J Mol Sci 11:2188–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korkina LG (2007) Phenylpropanoids as naturally occurring antioxidants: from plant defence to human health. Cell Mol Biol 53:15–25

    CAS  PubMed  Google Scholar 

  • Korulkina LM, Shul’ts EE, Zhusupova GE, Abilov ZA, Erzhanov KB, Chaudri MI (2004) Biologically active compounds from Limonium gmelinii and L. popovii I. Chem Nat Compd 40:465–471

    Article  CAS  Google Scholar 

  • Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol Biochem 45:244–249

    Article  CAS  PubMed  Google Scholar 

  • Ksouri R, Megdiche W, Falleh H, Trabelsi N, Boulaaba M, Smaoui A, Abdelly C (2008) Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. C R Biol 331(11):865–873

    Article  CAS  PubMed  Google Scholar 

  • Ksouri R, Falleh H, Megdiche W, Trabelsi N, Mhamdi B, Chaieb K, Abdelly C (2009) Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem Toxicol 47(8):2083–2091

    Article  CAS  PubMed  Google Scholar 

  • Ksouri R, Megdiche W, Koyro HW, Abdelly C (2010) Responses of halophytes toenvironmental stresses with special emphasis to salinity. Adv Bot Res 53:117–145

    Article  CAS  Google Scholar 

  • Ksouri R, Ksouri WM, Jallali I, Debez A, Magné C, Hiroko I, Abdelly C (2012) Medicinal halophytes: potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit Rev Biotechnol 32:289–326

    Article  CAS  PubMed  Google Scholar 

  • Kumarasamy Y, Byres M, Cox PJ, Jasapars M, Nahar L, Sarker SD (2007) Screening seeds of some Scottish plants for free-radical scavenging activity. Phytother Res 21:615–621

    Article  PubMed  Google Scholar 

  • Lattanzio V, Lattanzio VMT, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem Adv Res 2006:23–67

    Google Scholar 

  • Lee J, Kong CS, Jung M, Wan Hong J, Young Lim S, Seo Y (2011) Antioxidant activity of the halophyte Limonium tetragonum and its major active components. Biotechnol Bioprocess Eng 16:992–999

    Article  CAS  Google Scholar 

  • Lopes A, Rodrigues MJ, Pereira CG, Oliveira M, Barreira L, Varela J, Trampetti F, Custódio L (2016) Natural products from extreme marine environments: searching for potential industrial uses within extremophile plants. Ind Crop Prod 94:299–307

    Article  CAS  Google Scholar 

  • Magalhães LM, Segundo MA, Reis S, Lima JLFC (2008) Methodological aspects about in vitro evaluation of antioxidant properties. Anal Chim Acta 613:1–19

    Article  PubMed  CAS  Google Scholar 

  • Maistro EL, Angeli JPF, Andrade SF, Mantovani MS (2011) In vitro genotoxicity assessment of caffeic, cinnamic and ferulic acid. Genet Mol Res 10(2):1130–1140

    Article  CAS  PubMed  Google Scholar 

  • Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    Article  CAS  PubMed  Google Scholar 

  • Mandal MS, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5(4):359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medini F, Bourgou S, Lalancette K, Snoussi M, Mkadmini K, Coté I, Abdelly C, Legault J, Ksouri R (2015) Phytochemical analysis, antioxidant, anti-inflammatory, and anticancer activities of the halophyte Limonium densiflorum extracts on human cell lines and murine macrophages. South Afr J Bot 99:158–164

    Article  CAS  Google Scholar 

  • Meot-Duros L, Magne C (2009) Antioxidant activity and phenol content of Crithmum maritimum L. leaves. Plant Physiol Biochem 47(1):37–41

    Article  CAS  PubMed  Google Scholar 

  • Meot-Duros L, Le Floch G, Magne C (2008) Radical scavenging, antioxidant and antimicrobial activities of halophytic species. J Ethnopharmacol 116:258–262

    Article  PubMed  Google Scholar 

  • Merkl R, Hradkova I, Filip V, Šmidrkal J (2010) Antimicrobial and antioxidant properties of phenolic acids alkyl esters. Czech J Food Sci 28(4):275–279

    Article  CAS  Google Scholar 

  • Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19(10):16240–16265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Navarro JM, Flores P, Garrido C, Martinez V (2006) Changes in the contents of antioxidants compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chem 96:66–73

    Article  CAS  Google Scholar 

  • Oh MM, Trick HN, Rajashekar CB (2009) Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. J Plant Physiol 166:180–191

    Article  CAS  PubMed  Google Scholar 

  • Oueslati S, Ksouri R, Falleh H, Pichette A, Abdelly C, Legault J (2012a) Phenolic content, antioxidant, anti-inflammatory and anticancer activities of the edible halophyte Suaeda fruticosa Forssk. Food Chem 132(2):943–947

    Article  CAS  Google Scholar 

  • Oueslati S, Trabelsi N, Boulaaba M, Legault J, Abdelly C, Ksouri R (2012b) Evaluation of antioxidant activities of the edible and medicinal Suaeda species and related phenolic compounds. Ind Crop Prod 36(1):513–518

    Article  CAS  Google Scholar 

  • Pereira CG, Barreira L, da Rosa Neng N, Nogueira JMF, Marques C, Santos TF, Varela J, Custódio L (2017a) Searching for new sources of innovative products for the food industry within halophyte aromatic plants: In vitro antioxidant activity and phenolic and mineral contents of infusions and decoctions of Crithmum maritimum L. Food Chem Toxicol 107:581–589

    Article  CAS  PubMed  Google Scholar 

  • Pereira CG, Custódioa L, Rodriguesa MJ, Nengb NR, Nogueirab JMF, Carliera J, Costaa MC, Varelaa J Barreiraa L (2017b) Profiling of antioxidant potential and phytoconstituents of Plantago coronopus. Braz J Biol 77(3):632–641

    Article  CAS  PubMed  Google Scholar 

  • Povichit N, Phrutivorapongkul A, Suttajit M, Chaiyasut CC, Leelapornpisid P (2010) Phenolic content and in vitro inhibitory effects on oxidation and protein glycation of some Thai medicinal plant. Pak J Pharm Sci 23(4):403–408

    CAS  PubMed  Google Scholar 

  • Qasim M, Abideen Z, Adnan MY, Gulzar S, Gul B, Rasheed M, Khan MA (2017) Antioxidant properties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. South Afr J Bot 110:240–250

    Article  CAS  Google Scholar 

  • Quettier DC, Gressier B, Vasseur J, Dine T, Brunet C, Luyckx M, Cazin M, Cazin JC, Bailleul F, Trotin F (2000) Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol 72:35–42

    Article  Google Scholar 

  • Quideau S, Deffieux D, Douat-Casassus C, Pouysegu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed Eng 50:586–621

    Article  CAS  Google Scholar 

  • Rechner AR, Kuhnle P, Bremner GP, Hubbard KP, Moore GCA, Rice-Evans CA (2002) The metabolic fate of dietary polyphenols in humans. Free Radic Biol Med 33:220–235

    Article  CAS  PubMed  Google Scholar 

  • Ren W, Qiao Z, Wang H, Zhu L, Zhang L (2003) Flavonoids: promising anticancer agents. Med Res Rev 23(4):519–534

    Article  CAS  PubMed  Google Scholar 

  • Rigano MM, Raiola A, Docimo T, Ruggieri V, Calafiore R, Vitaglione P, Ferracane R, Frusciante L, Barone A (2016) Metabolic and molecular changes of the phenylpropanoid pathway in tomato (Solanum lycopersicum) lines carrying different Solanum pennellii wild chromosomal regions. Front Plant Sci. https://doi.org/10.3389/fpls.2016.01484

  • Robbins RJ (2003) Phenolic acids in foods: an overview of analytical methodology. Agric Food Chem 51(10):2866–2887

    Article  CAS  Google Scholar 

  • Rodrigues MJ, Gangadhar KN, Vizetto-Duarte C, Wubshet SG, Nyberg NT, Barreira L, Varela J, Custodio L (2014) Maritime halophyte species from southern Portugal as sources of bioactive molecules. Mar Drugs 12(4):2228–2244

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodrigues MJ, Soszynski A, Martins A, Rauter AP, Neng NR, Nogueira JMF, Varela J, Barreira L, Custódio L (2015) Unravelling the antioxidant potential and the phenolic composition of different anatomical organs of the marine halophyte Limonium algarvense. Ind Crop Prod 77:315–322

    Article  CAS  Google Scholar 

  • Rodrigues MJ, Neves V, Martins A, Rauter AP, Neng NR, Nogueira JMF, Varela J, Barreira L, Custódio L (2016) In vitro antioxidant and anti-inflammatory properties of Limonium algarvense flowers’ infusions and decoctions: a comparison with green tea (Camellia sinensis). Food Chem 200:322–329

    Article  CAS  PubMed  Google Scholar 

  • Rohma A, Riyanto S, Yuniarti N, Saputra WR, Utami R, Mulatsih W (2010) Antioxidant activity, total phenolic, and total flavonoid of extracts and fractions of red fruit (Pandanus conoideus Lam). Int Food Res J 17:97–106

    Google Scholar 

  • Sanderson SC, Ge-ling C, McArthur ED, Stutz HC (1988) Evolutionary loss of flavonoids and other chemical characters in the Chenopodiaceae. Biochem Syst Ecol 16:143–149

    Article  CAS  Google Scholar 

  • Sarikurkcu C, Eryigit F, Cengiz M, Tepe B, Cakir A, Mete E (2012) Screening of the antioxidant activity of the essential oil and methanol extract of Mentha pulegium L. from Turkey. An Int J Rapid Commun 45(5):352–358

    CAS  Google Scholar 

  • Sasaki YF, Kawaguchi S, Kamaya A, Ohshita M, Kabasawa K, Iwama K, Taniguchi K, Tsuda S (2002) The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutat Res Genet Toxicol Environ Mutagen 519:103–119

    Article  CAS  Google Scholar 

  • Sekmen AH, Turkan I, Tanyolac ZO, Ozfidan C, Dinc A (2012) Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata bark. Environ Exp Bot 77:63–76

    Article  CAS  Google Scholar 

  • Selmar D, Kleinwachter M (2013) Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Ind Crop Prod 42:558–566

    Article  CAS  Google Scholar 

  • Serkerov SV, Aleskerova AN (1984) Sesquiterpene lactones of Artemisia santonica. Chem Nat Compd 20:391–392

    Article  Google Scholar 

  • Shoham A, Hadziahmetovic M, Dunaief JL, Mydlarski MB, Schipper HM (2008) Oxidative stress in diseases of the human cornea. Free Radic Biol Med 45:1047–1055

    Article  CAS  PubMed  Google Scholar 

  • Sindhi V, Gupta V, Sharma K, Bhatnagar S, Kumari R, Dhaka N (2013) Potential applications of antioxidants. a review. J Pharm Res 7:828–835

    CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela RRM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Sousa EO, Miranda CMBA, Nobre CB, Boligon AA, Athayde ML, Costa JGM (2015) Phytochemical analysis and antioxidant activities of Lantana camara and Lantana montevidensis extracts. Ind Crop Prod 70:7–15

    Article  CAS  Google Scholar 

  • Spano C, Bruno M, Bottega S (2013) Calystegia soldanella: dune versus laboratory plants to highlight key adaptive physiological traits. Acta Psysiol Plant 35(4):1329–1336

    Article  CAS  Google Scholar 

  • Stanković MS, Niciforovic N, Mihailovic V, Topuzovic M, Solujic S (2012) Antioxidant activity, total phenolic content and flavonoid concentrations of different plant parts of Teucrium polium L. subsp. polium. Acta Soc Bot Pol 81(2):117

    Article  CAS  Google Scholar 

  • Stanković MS, Petrović M, Godjevac D, Stevanović ZD (2015) Screening inland halophytes from the central Balkan for their antioxidant activity in relation to total phenolic compounds and flavonoids: are there any prospective medicinal plants? J Arid Environ 120:26–32

    Article  Google Scholar 

  • Tahira R, Naeemullah M, Akbar F, Masood MS (2011) Major phenolic acids of local and exotic mint germplasm grown in Islamabad. Pak J Bot 43:151–154

    Google Scholar 

  • Takao T, Watanabe N, Yagi I, Sakata K (1994) A simple screening method for antioxidant and isolation of several antioxidants produced by marine bacteria from fish and shellfish. Biosci Biotechnol Biochem 58:1780–1783

    Article  CAS  Google Scholar 

  • Tapas AR, Sakarkar DM, Kakde RB (2008) Flavonoids as nutraceuticals: a review. Trop J Pharm Res 7(3):1089–1099

    Article  Google Scholar 

  • Trabelsi N, Megdiche W, Ksouri R, Falleh H, Oueslati S, Soumaya B, Hajlaoui H, Abdelly C (2010) Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves. LWT Food Sci Technol 43:632–639

    Article  CAS  Google Scholar 

  • Trabelsi N, Oueslati S, Falleh H, Waffo-Téguo P, Papastamoulis Y, Mérillon JM, Abdelly C, Ksouri R (2012) Isolation of powerful antioxidants from the medicinal halophyte Limoniastrum guyonianum. Food Chem 135(3):1419–1424

    Article  CAS  PubMed  Google Scholar 

  • Trischitta F, Faggio C (2006) Effect of the flavonol quercetin on ion transport in the isolated intestine of the eel, Anguilla anguilla. Comp Biochem Physiol C Toxicol Pharmacol 143:17–22

    Article  PubMed  CAS  Google Scholar 

  • Trischitta F, Faggio C (2008) Gossypol affects ion transport in the isolated intestine of the seawater adapted eel, Anguilla anguilla. Comp Biochem Physiol A Mol Integr Physiol 151:139–143

    Article  PubMed  CAS  Google Scholar 

  • Verpoorte R (2000) Secondary metabolism. In: Verpoorte R, Alfermann AW (eds) Metabolic engineering of plant secondary metabolism. Springer, Dordrecht

    Chapter  Google Scholar 

  • Vilela C, Santos SA, Coelho D, Silva AM, Freire CS, Neto CP, Silvestre AJ (2014) Screening of lipophilic and phenolic extractives from different morphological parts of Halimione portulacoides. Ind Crop Prod 52:373–379

    Article  CAS  Google Scholar 

  • Wang BN, Liu HF, Zheng JB, Fan MT, Cao W (2011) Distribution of phenolic acids in different tissues of jujube and their antioxidant activity. J Agric Food Chem 59(4):1288–1292

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:165–183

    Article  CAS  Google Scholar 

  • Yang RY, Lin S, Kuo G (2008) Content and distribution of flavonoids among 91 edible plant species. Asia Pac J Clin Nutr 17:275–279

    CAS  PubMed  Google Scholar 

  • Zaixiang L, Wang H, Zhu S, Ma C, Wang Z (2011) Antibacterial activity and mechanism of action of chlorogenic acid. J Food Sci 76(6):398–403

    Article  CAS  Google Scholar 

  • Zengin G, Uysal S, Ceylan R, Aktumsek A (2015) Phenolic constituent, antioxidative and tyrosinase inhibitory activity of Ornithogalum narbonense L. from Turkey: a phytochemical study. Ind Crop Prod 70:1–6

    Article  CAS  Google Scholar 

  • Ziaei M, Sharifi M, Behmanesh M, Razavi K (2012) Gene expression and activity of phenyl alanine amonialyase and essential oil composition of Ocimum basilicum L. at different growth stages. Iran J Biotechnol 10:32–39

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Stanković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stanković, M., Jakovljević, D., Stojadinov, M., Stevanović, Z.D. (2019). Halophyte Species as a Source of Secondary Metabolites with Antioxidant Activity. In: Hasanuzzaman, M., Nahar, K., Öztürk , M. (eds) Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes. Springer, Singapore. https://doi.org/10.1007/978-981-13-3762-8_14

Download citation

Publish with us

Policies and ethics