Skip to main content

Microbial Production and Properties of LA-based Polymers and Oligomers from Renewable Feedstock

  • Chapter
  • First Online:
Production of Materials from Sustainable Biomass Resources

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 9))

Abstract

Most plastics, materials, fuels and other organic chemicals are presently derived from fossil fuel feedstocks. Due to the finite nature and foreseeable depletion potential of these raw materials, concerted efforts are being explored to find sustainable alternatives to the fossil fuel feedstock-derived products. Among these, bioplastics and oligomers derived from fermentation of the renewable plant biomass are promising candidates to replace fossil-fuel-derived plastics. Bioplastics are a class of storage polymers synthesized by microorganisms. Natural plastics can also be produced via a bio-chemo process that combines fermentative production of monomers or oligomers, followed by a chemical synthesis process to produce a variety of polymers. These polymers, particularly polyhydroxyalkanoates (PHAs ) represent futuristic biomaterials owing to their biodegradability and biocompatibility. Furthermore, PHAs have physicochemical properties that are similar to petrochemical-based plastics hence their potential replacement. Designing efficient processes holds the key towards their adoption. This chapter discusses opportunities and challenges regarding the production of lactic acid (LA)-based polymers and related oligomers that can act as precursors for catalytic synthesis of polylactic acid (PLA ). It covers crucial steps of their production using genetically modified organisms and engineered enzymes as well as providing future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed Engl 54(11):3210–3215

    Article  CAS  PubMed  Google Scholar 

  2. Law KL (2017) Plastics in the marine environment. Annu Rev Mar Sci 9:205–229

    Article  Google Scholar 

  3. Thompson RC, Moore CJ, vom Saal FS, Swan SH (2009) Plastics, the environment and human health: current consensus and future trends. Phil Trans R Soc B 364:2153–2166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andrady AL, Neal MA (2009) Applications and societal benefits of plastics. Phil Trans R Soc B 364:1977–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Plastics Europe (2016) Plastics Europe plastics–the facts 2016. Plastics Europe, Brussels, pp 1–38

    Google Scholar 

  6. Geyer R, Jambeck JR, Law KL (2017) Production, use and fate of all plastics ever made. Sci Adv 3(7):e1700782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Halden RU (2010) Plastics and health risks. Annu Rev Public Health 31:179–194

    Article  PubMed  Google Scholar 

  8. Raza ZA, Riaz S, Banat IM (2018) Polyhydroxyalkanoates: properties and chemical modification approaches for their functionalization. Biotechnol Prog 34(1):29–41

    Article  CAS  PubMed  Google Scholar 

  9. Takasuga T, Umetsu N, Makino T, Tsubota K, Sajwan KS, Kumar KS (2007) Role of temperature and hydrochloric acid on the formation of chlorinated hydrocarbons and polycyclic aromatic hydrocarbons during combustion of paraffin powder, polymers, and newspaper. Arch Environ Contam Toxicol 53:8–21

    Article  CAS  PubMed  Google Scholar 

  10. Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond Ser B 364:1985–1998

    Article  CAS  Google Scholar 

  11. Mecking S (2004) Nature or petrochemistry?-biologically degradable materials. Angew Chem Int Ed Engl 43:1078–1085

    Article  CAS  PubMed  Google Scholar 

  12. Nduko JM, Matsumoto K, Taguchi S (2012) Biological lactate-polymers synthesized by one-pot microbial factory: enzyme and metabolic engineering. In: Smith PB, Gross RA (eds) Biobased monomers, polymers, and materials, vol 1105. American Chemical Society, New York, pp 213–235

    Chapter  Google Scholar 

  13. Taguchi S (2010) Current advances in microbial cell factories for lactate-polymerizing enzymes: toward further creation of new LA-based polyesters. Polym Degrad Stab 95:1421–1428

    Article  CAS  Google Scholar 

  14. Reddy C, Ghai R, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146

    Article  CAS  PubMed  Google Scholar 

  15. Kourmentza C, Kornaros M (2016) Biotransformation of volatile fatty acids to polyhydroxyalkanoates by employing mixed microbial consortia: the effect of pH and carbon source. Bioresour Technol 222:388–398

    Article  CAS  PubMed  Google Scholar 

  16. Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MAM (2017) Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4(2). pii: 55

    Google Scholar 

  17. Verlinden RAJ, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449

    Article  CAS  PubMed  Google Scholar 

  18. Saharan BS, Grewal A, Kumar P (2014) Biotechnological production of polyhydroxyalkanoates: a review on trends and latest developments. Chin J Biol 2014:1–18

    Article  CAS  Google Scholar 

  19. Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446

    Article  CAS  PubMed  Google Scholar 

  20. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3- hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63(1):21–53

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants: a review. Biotechnol Adv 25:148–175

    Article  CAS  PubMed  Google Scholar 

  22. Lee GN, Na J (2013) Future of microbial polyesters. Microb Cell Factories 12:54

    Article  CAS  Google Scholar 

  23. Hazer B, Steinbuchel A (2007) Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 74:1–12

    Article  CAS  PubMed  Google Scholar 

  24. Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 85:732–743

    Article  CAS  Google Scholar 

  25. Li R, Zhang HH, Qi Q (2007) The production of polyhydroxyalkanoates in recombinant Escherichia coli. Bioresour Technol 98(12):2313–2320

    Article  CAS  PubMed  Google Scholar 

  26. Park SJ, Kim TW, Kim MK, Lee SY, Lim SC (2012) Advanced bacterial polyhydroxyalkanoates: towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnol Adv 30:1196–1206

    Article  CAS  PubMed  Google Scholar 

  27. Lopez NI, Pettinari MJ, Nikel PI, Mendez BS (2015) Polyhydroxyalkanoates: much more than biodegradable plastics. Adv Appl Microbiol 93:73–106

    Article  PubMed  Google Scholar 

  28. Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12(23):1841–1846

    Article  CAS  Google Scholar 

  29. Garlotta D (2001) A literature review of poly(Lactic Acid). J Polym Environ 9(2):63–84

    Article  CAS  Google Scholar 

  30. Conn RE, Kolstad JJ, Borzelleca JF, Dixler DS, Filer LJ, LaDu BN, Pariza MW (1995) Safety assessment of polylactide (PLA) for use as a food contact polymer. Food Chem Toxicol 33(4):273–283

    Article  CAS  PubMed  Google Scholar 

  31. Henton DE, Gruber P, Lunt J, Randall J (2005) Polylactic acid technology. In: Mohanty AK (ed) Natural fibers, biopolymers and biocomposites. CRC Press, Boca Raton, pp 528–569

    Google Scholar 

  32. Li Q-Z, Jiang X-L, Feng X-J, Wang J-M, Sun C, Zhang H-B et al (2016) Recovery processes of organic acids from fermentation broths in the biomass-based industry. J Microbiol Biotechnol 26(1):1–8

    Article  PubMed  CAS  Google Scholar 

  33. Södergård A, Stolt M (2010) Industrial production of high molecular weight poly(lactic acid). In: Poly(lactic acid). Wiley, New York, pp 27–41

    Chapter  Google Scholar 

  34. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502

    Article  CAS  PubMed  Google Scholar 

  35. Lasprilla AJ, Martinez GA, Lunelli BH, Jardini AL, Filho RM (2012) Poly-lactic acid synthesis for application in biomedical devices-a review. Biotechnol Adv 30(1):321–328

    Article  CAS  PubMed  Google Scholar 

  36. Taguchi S, Yamada M, Matsumoto K, Tajima K, Satoh Y, Munekata M, Ohno K, Kohda K, Shimamura T, Kambe H, Obata S (2008) A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc Natl Acad Sci U S A 105:17323–17327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Utsunomia C, Matsumoto K, Taguchi S (2017) Microbial secretion of D-lactate-based oligomers. ACS Sustain Chem Eng 5:2360–2367

    Article  CAS  Google Scholar 

  38. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501

    Article  CAS  Google Scholar 

  39. Steinbuchel A, Lutke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16:81–96

    Article  CAS  Google Scholar 

  40. Tsuji H, Ikada Y (1998) Properties and morphology of poly (L-lactide). II. Hydrolysis in alkaline solution. J Appl Polym Sci 36(1):59–66

    Article  CAS  Google Scholar 

  41. Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356

    Article  CAS  Google Scholar 

  42. Farrington DW, Lunt J, Davies S, Blackburn RS (2005) Poly (lactic acid) fibers. Woodhead Publishing Series in Textiles, Cambridge, pp 191–220

    Google Scholar 

  43. Castro-Aguirre E, Iniguez-Franco F, Samsudin H, Fang X, Auras R (2016) Poly(lactic acid)–mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev 107:333–366

    Article  CAS  PubMed  Google Scholar 

  44. De Clercq R, Dusselier M, Makshina E, Sels BF (2018) Catalytic gas-phase production of lactide from renewable alkyl lactates. Angew Chem Int Ed 57:1–6

    Article  CAS  Google Scholar 

  45. Vink ETH, Davies S (2015) Life cycle inventory and impact assessment data for 2014 Ingeo™ polylactide production. Ind Biotechnol 11(3):167–180

    Article  CAS  Google Scholar 

  46. Matsumoto K, Taguchi S (2010) Enzymatic and whole-cell synthesis of lactate-containing polyesters: toward the complete biological production of polylactate. Appl Microbiol Biotechnol 85(4):921–932

    Article  CAS  PubMed  Google Scholar 

  47. Van Wouwe P, Dusselier M, Vanleeuw E, Sels B (2016) Lactide synthesis and chirality control for polylactic acid production. ChemSusChem 9(9):907–921

    Article  PubMed  CAS  Google Scholar 

  48. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rehm BHA (2006) Genetics and biochemistry of polyhydroxyalkanoate granule self-assembly: the key role of polyester sythases. Biotechnol Lett 28:207–213

    Article  CAS  PubMed  Google Scholar 

  50. Hori C, Oishi K, Matsumoto K, Taguchi S, Ooi T (2018) Site-directed saturation mutagenesis of polyhydroxylalkanoate synthase for efficient microbial production of poly[(R)-2-hydroxybutyrate]. J Biosci Bioeng. pii: S1389-1723(17)31017-4

    Google Scholar 

  51. Matsumoto K, Shiba T, Hiraide Y, Taguchi S (2017) Incorporation of glycolate units promotes hydrolytic degradation in flexible poly(glycolate-co-3-hydroxybutyrate) synthesized by engineered Escherichia coli. ACS Biomater Sci Eng 3(12):3058–3063

    Article  CAS  PubMed  Google Scholar 

  52. Nduko JM, Sun J, Taguchi S (2015) Biosynthesis, properties, and biodegradation of lactate-based polymers. In: Green polymer chemistry: biobased materials and biocatalysis. American Chemical Society, Washington, DC, pp 113–131

    Chapter  Google Scholar 

  53. Menges G, Haberstroh E, Michaeli W, Schmachtenberg E (2011) Menges Werkstoffkunde Kunststoffe, 5. Auflage. C. Hanser-Verlag, Munchen

    Book  Google Scholar 

  54. Yamada M, Matsumoto K, Uramoto S, Motohashi R, Abe H, Taguchi S (2011) Lactate fraction dependent mechanical properties of semitransparent poly(lactate-co-3-hydroxybutyrate)s produced by control of lactyl-CoA monomer fluxes in recombinant Escherichia coli. J Biotechnol 154:255–260

    Article  CAS  PubMed  Google Scholar 

  55. Song Y, Matsumoto K, Yamada M, Gohda A, Brigham C, Sinskey A, Taguchi S (2012) Engineered Corynebacterium glutamicum as an endotoxin-free platform strain for lactate-based polyester production. Appl Microbiol Biotechnol 93:1917–1925

    Article  CAS  PubMed  Google Scholar 

  56. Yamada M, Matsumoto K, Shimizu K, Uramoto S, Nakai T, Shozui F, Taguchi S (2010) Adjustable mutations in lactate (LA)-polymerizing enzyme for the microbial production of LA-based polyesters with tailor-made monomer composition. Biomacromolecules 11:815–819

    Article  CAS  PubMed  Google Scholar 

  57. Yamada M, Matsumoto K, Nakai T, Taguchi S (2009) Microbial production of lactate-enriched poly[(R)-lactate-co-(R)-3-hydroxybutyrate] with novel thermal properties. Biomacromolecules 10:677–681

    Article  CAS  PubMed  Google Scholar 

  58. Tajima K, Satoh Y, Satoh T, Itoh R, Han XR, Taguchi S, Kakuchi T, Munekata M (2009) Chemo-enzymatic synthesis of poly(lactate-co-(3-hydroxybutyrate)) by a lactate-polymerizing enzyme. Macromolecules 42:1985–1989

    Article  CAS  Google Scholar 

  59. Shozui F, Matsumoto K, Motohashi R, Sun JA, Satoh T, Kakuchi T, Taguchi S (2011) Biosynthesis of a lactate (LA)-based polyester with a 96 mol% LA fraction and its application to stereocomplex formation. Polym Degrad Stab 96:499–504

    Article  CAS  Google Scholar 

  60. Nomura CT, Taguchi K, Gan Z, Kuwabara K, Tanaka T, Takase K et al (2005) Expression of 3-ketoacyl-acyl carrier protein reductase (fabG) genes enhances production of polyhydroxyalkanoate copolymer from glucose in recombinant Escherichia coli JM109. Appl Environ Microbiol 71:4297e306

    Article  CAS  Google Scholar 

  61. Taguchi K, Aoyagi Y, Matsusaki H, Fukui T, Doi Y (1999) Co-expression of 3-ketoacyl-ACP reductase and polyhydroxyalkanoate synthase genes induces PHA production in Escherichia coli HB101 strain. FEMS Microbiol Lett 176:183e90

    Article  Google Scholar 

  62. Nomura CT, Taguchi K, Taguchi S, Doi Y (2004) Coexpression of genetically engineered 3-ketoacyl-ACP synthase III (fabH) and polyhydroxyalkanoate synthase (phaC) genes leads to short-chain-length/medium-chain-length polyhydroxyalkanoate copolymer production from glucose in Escherichia coli JM109. Appl Environ Microbiol 70:999e1007

    Article  CAS  Google Scholar 

  63. Shozui F, Matsumoto K, Nakai T, Yamada M, Taguchi S (2009) Biosynthresis of novel terpolymers Poly(lactate-co-3-hydroxybutyrate-co-3-hydroxyvalerate)s in lactate overproducing mutant Escherichia coli JW0885 by feeding propionate as a precursor of 3-hydroxyvalerate. Appl Microbiol Biotechnol 85:949–954

    Article  PubMed  CAS  Google Scholar 

  64. Furrer P, Zinn M, Panke S (2007) Efficient recovery of low endotoxin medium-chain-length poly([R]-3-hydroxyalkanoate) from bacterial biomass. J Microbiol Methods 69:206–213

    Article  CAS  PubMed  Google Scholar 

  65. Lee SY, Choi JI, Han K, Song JY (1999) Removal of endotoxin during purification of poly(3-hydroxybutyrate) from Gram negative bacteria. Appl Environ Microbiol 65:2762–2764

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Valappil SP, Boccaccini AR, Bucke C, Roy I (2007) Polyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and Streptomyces. Antonie Van Leeuwenhoek 91:1–17

    Article  CAS  PubMed  Google Scholar 

  67. Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8

    Article  CAS  PubMed  Google Scholar 

  68. Jo SJ, Maeda M, Ooi T, Taguchi S (2006) Production system for biodegradable polyester polyhydroxybutyrate by Corynebacterium glutamicum. J Biosci Bioeng 102:233–236

    Article  CAS  PubMed  Google Scholar 

  69. Jo SJ, Matsumoto K, Leong CR, Ooi T, Taguchi S (2007) Improvement of poly(3-hydroxybutyrate) [P(3HB)] production in Corynebacterium glutamicum by codon optimization, point mutation and gene dosage of P(3HB) biosynthetic genes. J Biosci Bioeng 104:457–463

    Article  CAS  PubMed  Google Scholar 

  70. Matsumoto K, Lijima M, Hori C, Utsunomia C, Ooi T, Taguchi S (2018) In Vitro analysis of D-Lactyl-CoA-polymerizing polyhydroxyalkanoate synthase in polylactate and Poly(lactate- co-3-hydroxybutyrate) syntheses. Biomacromolecules. https://doi.org/10.1021/acs.biomac.8b00454

  71. Song Y, Nduko JM, Matsumoto K, Taguchi S (2015) Microbial factory for the production of polyesters: a new platform of Cornebacterium glutamicum. In: Burkovski A (ed) Corynebacterium glutamicum: from systems biology to biotechnological applications. Caister Academic Press, Norfolk, pp 139–150

    Chapter  Google Scholar 

  72. Kadoya R, Kodama Y, Matsumoto K, Taguchi S (2015) Enhanced cellular content and lactate fraction of the poly(lactate-co-3-hydroxybutyrate) polyester produced in recombinant Escherichia coli by the deletion of σ factor RpoN. J Biosci Bioeng 119(4):427–429

    Article  CAS  PubMed  Google Scholar 

  73. Nduko JM, Matsumoto K, Ooi T, Taguchi S (2013) Effectiveness of xylose utilization for high yield production of lactate-enriched P(lactate-co-3-hydroxybutyrate) using a lactate-overproducing strain of Escherichia coli and an evolved lactate-polymerizing enzyme. Metab Eng 15:159–166

    Article  CAS  PubMed  Google Scholar 

  74. Nduko JM, Matsumoto K, Ooi T, Taguchi S (2014) Enhanced production of poly(lactate-co-3-hydroxybutyrate) from xylose in engineered Escherichia coli overexpressing a galactitol transporter. Appl Microbiol Biotechnol 98:2453–2460

    Article  CAS  PubMed  Google Scholar 

  75. Kadoya R, Kodama Y, Matsumoto K, Taguchi S (2015) Indirect positive effects of a sigma factor RpoN deletion on the lactate-based polymer production in Escherichia coli. Bioengineered 6(5):307–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kadoya R, Matsumoto K, Ooi T, Taguchi S (2015) MtgA deletion-triggered cell enlargement of Escherichia coli for enhanced intracellular polyester accumulation. PLoS One 10(6):e0125163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Abdel-Rahman MA, Tashiro Y, Zendo T, Hanada K, Shibata K, Sonomoto K (2011) Efficient homofermentative L-(+)-lactic acid production from xylose by a novel lactic acid bacterium, Enterococcus mundtii QU 25. Appl Environ Microbiol 77:1892–1895

    Article  CAS  PubMed  Google Scholar 

  78. Matsumoto K, Kobayashi H, Ikeda K, Komanoya T, Fukuoka A, Taguchi S (2011) Chemo-microbial conversion of cellulose into polyhydroxybutyrate through ruthenium-catalyzed hydrolysis of cellulose into glucose. Bioresour Technol 102:3564–3567

    Article  CAS  PubMed  Google Scholar 

  79. Yu J, Stahl H (2008) Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresour Technol 99:8042–8048

    Article  CAS  PubMed  Google Scholar 

  80. Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513

    Article  CAS  Google Scholar 

  81. Aristidou A, Penttila M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198

    Article  CAS  PubMed  Google Scholar 

  82. Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506e577

    Article  CAS  Google Scholar 

  83. Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845

    Article  CAS  PubMed  Google Scholar 

  84. FitzPatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101:8915–8922

    Article  CAS  PubMed  Google Scholar 

  85. Adsul MG, Singhvi MS, Gaikaiwari SA, Gokhale DV (2011) Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass. Bioresour Technol 102:4304–4312

    Article  CAS  PubMed  Google Scholar 

  86. Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800

    Article  CAS  PubMed  Google Scholar 

  87. Shozui F, Matsumoto K, Nakai T, Yamada M, Taguchi S (2010) Biosynthesis of novel terpolymers poly(lactate-co-3-hydroxybutyrate-co-3-hydroxyvalerate)s in lactate-overproducing mutant Escherichia coli JW0885 by feeding propionate as a precursor of 3-hydroxyvalerate. Appl Microbiol Biotechnol 85:949–954

    Article  CAS  PubMed  Google Scholar 

  88. Zhou L, Zuo ZR, Chen XZ, Niu DD, Tian KM, Prior BA, Shen W, Shi GY, Singh S, Wang ZX (2011) Evaluation of genetic manipulation strategies on D-lactate production by Escherichia coli. Curr Microbiol 62:981–989

    Article  CAS  PubMed  Google Scholar 

  89. Hasona A, Kim Y, Healy FG, Ingram LO, Shanmugam KT (2004) Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. J Bacteriol 186:7593–7600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sun J, Utsunomia C, Sasaki S, Matsumoto K, Yamada T, Ooi T, Taguchi S (2016) Microbial production of poly(lactate-co-3-hydroxybutyrate) from hybrid Miscanthus-derived sugars. Biosci Biotechnol Biochem 80(4):818–820

    Article  CAS  PubMed  Google Scholar 

  91. Takisawa K, Ooi T, Matsumoto K, Kadoya R, Taguchi S (2017) Xylose-based hydrolysate from Eucalyptus extract as feedstock for poly(lactate-co-3-hydroxybutyrate) production in engineered Escherichia coli. Process Biochem 54:102–105

    Article  CAS  Google Scholar 

  92. Salamanca-Cardona L, Scheel RA, Mizuno K, Bergey NS, Stipanovic AJ, Matsumoto K, Taguchi S, Nomura CT (2017) Effect of acetate as a co-feedstock on the production of poly(lactate-co-3-hydroxyalkanoate) by pflA-deficient Escherichia coli RSC10. J Biosci Bioeng 123(5):547–554

    Article  CAS  PubMed  Google Scholar 

  93. Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22(1):33–64

    Article  CAS  PubMed  Google Scholar 

  94. Salamanca-Cardona L, Ashe CS, Stipanovic AJ, Nomura CT (2014) Enhanced production of polyhydroxyalkanoates (PHAs) from beechwood xylan by recombinant Escherichia coli. Appl Microbiol Biotechnol 98(2):831–842

    Article  CAS  PubMed  Google Scholar 

  95. Salamanca-Cardona L, Scheel RA, Bergey NS, Stipanovic AJ, Matsumoto K, Taguchi S, Nomura CT (2016) Consolidated bioprocessing of poly(lactate-co-3-hydroxybutyrate) from xylan as a sole feedstock by genetically-engineered Escherichia coli. J Biosci Bioeng 122(4):406–414

    Article  CAS  PubMed  Google Scholar 

  96. Huang J, Lisowski MS, Runt J, Hall ES, Kean RT, Buehler N, Lin JS (1998) Crystallization and microstructure of Poly(l-lactide-co-meso-lactide) copolymers. Macromolecules 31(8):2593–2599

    Article  CAS  Google Scholar 

  97. Rehm BH (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lutz JF, Ouchi M, Liu DR, Sawamoto M (2013) Sequence-controlled polymers. Science 341:1238149

    Article  PubMed  CAS  Google Scholar 

  99. Wolf FF, Friedemann N, Frey H (2009) Poly(lactide)-block-Poly(HEMA) block copolymers: an orthogonal one-pot combination of ROP and ATRP, using a bifunctional initiator. Macromolecules 42:5622–5628

    Article  CAS  Google Scholar 

  100. Matsumoto K, Hori C, Fujii R, Takaya M, Ooba T, Ooi T, Isono T, Satoh T, Taguchi S (2018) Dynamic changes of intracellular monomer levels regulate block sequence of polyhydroxyalkanoates in engineered Escherichia coli. Biomacromolecules 19(2):662–671

    Article  CAS  PubMed  Google Scholar 

  101. Kricheldorf HR (2001) Syntheses and application of polylactides. Chemosphere 43:49–54

    Article  CAS  PubMed  Google Scholar 

  102. Cicero JA, Dorgan JR, Janzen J, Garrett J, Runt J, Lin JS (2002) Supramolecular morphology of two-step, melt-spun poly(lactic acid) fibers. J Appl Polym Sci 86(11):2828–2838

    Article  CAS  Google Scholar 

  103. Espartero JL, Rashkov I, Li SM, Manolova N, Vert M (1996) NMR analysis of low molecular weight poly(lactic acid)s. Macromolecules 29(10):3535–3539

    Article  CAS  Google Scholar 

  104. Moon S, Taniguchi I, Miyamoto M, Kimura Y, Lee C (2001) Synthesis and properties of high-molecular-weight poly(L-lactic acid) by melt/solid polycondensation under different reaction conditions. High Perform Polym 13:190–197

    Article  Google Scholar 

  105. Moon SI, Lee CW, Taniguchi I, Miyamoto M, Kimura Y (2001) Melt/solid polycondensation of L-lactic acid: an alternative route to poly(L-lactic acid) with high molecular weight. Polymer 42(11):5059–5062

    Article  CAS  Google Scholar 

  106. Sodergard A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 27(6):1123–1163

    Article  CAS  Google Scholar 

  107. Engelberg I, Kohn J (1991) Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials 12(3):292–304

    Article  CAS  PubMed  Google Scholar 

  108. Srubar WV, Wright ZC, Tsui A, Michel AT, Billington SL, Frank CW (2012) Characterizing the effects of ambient aging on the mechanical and physical properties of two commercially available bacterial thermoplastics. Polym Degrad Stab 97(10):1–8

    Article  CAS  Google Scholar 

  109. Cox MK (1994) Biodegradable plastics and polymers. In: Doi Y, Fukuda K (eds) Proceedings of the third international scientific workshop on biodegradable plastics and polymers. Elsevier B.V, Osaka, pp 120–134

    Chapter  Google Scholar 

  110. Kusaka S, Iwata T, Doi Y (1999) Properties and biodegradability of ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate] produced by a recombinant Escherichia coli. Int J Biol Macromol 25(1–3):87–94

    Article  CAS  PubMed  Google Scholar 

  111. Kawai F, Nakadai K, Nishioka E, Nakajima H, Ohara H, Masaki K, Iefuji H (2011) Different enantioselectivity of two types of poly(lactic acid) depolymerases toward poly(L-lactic acid) and poly(D-lactic acid). Polym Degrad Stab 96:1342–1348

    Article  CAS  Google Scholar 

  112. Kobayashi T, Sugiyama A, Kawase Y, Saito T, Mergaert J, Swings J (1999) Biochemical and genetic characterization of an extracellular Poly(3-hydroxybutyrate) depolymerase from Acidovorax sp. strain TP4. J Environ Polym Degrad 7:9–18

    Article  CAS  Google Scholar 

  113. Jendrossek D, Knoke I, Habibian RB, Steinbüchel A, Schlegel HG (1994) Degradation of poly(3-hydroxybutyrate), PHB, by bacteria and purification of a novel PHB depolymerase from Comamonas sp. J Environ Polym Degrad 1:53–63

    Article  Google Scholar 

  114. Kasuya K, Doi Y, Yao T (1994) Enzymatic degradation of poly((R)-3hydroxybutyrate) by Comamonas testosteroni ATSU of soil bacterium. Polym Degrad Stab 45:379–386

    Article  CAS  Google Scholar 

  115. Kasuya K, Inoue Y, Tanaka T, Akehata T, Iwata T, Fukui T, Doi Y (1997) Biochemical and molecular characterization of the polyhydroxybutyrate depolymerase of Comamonas acidovorans YM1609, isolated from freshwater. Appl Environ Microbiol 63:4844–4852

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Sun J, Matsumoto K, Nduko JM, Ooi T, Taguchi S (2014) Enzymatic characterization of a depolymerase from the isolated bacterium Variovorax sp. C34 that degrades poly (enriched lactate-co-3-hydroxybutyrate). Polym Degrad Stab 110:44–49

    Article  CAS  Google Scholar 

  117. Abe H, Doi Y (1999) Structural effects on enzymatic degradabilities for poly[(R)-3-hydroxybutyric acid] and its copolymers. Int J Biol Macromol 25:185–192

    Article  CAS  PubMed  Google Scholar 

  118. Iwata T, Shiromo M, Doi Y (2002) Surface structures of poly[(R)-3-hydroxybutyrate] and its copolymer single crystals before and after enzymatic degradation with an extracellular PHB depolymerase. Macromol Chem Phys 203:1309–1316

    Article  CAS  Google Scholar 

  119. Madden LA, Anderson AJ, Shah DT, Asrar J (1999) Chain termination in polyhydroxyalkanoate synthesis: involvement of exogenous hydroxy-compounds as chain transfer agents. Int J Biol Macromol 25(1):43–53

    Article  CAS  PubMed  Google Scholar 

  120. Hiroe A, Hyakutake M, Thomson NM, Sivaniah E, Tsuge T (2013) Endogenous ethanol affects biopolyester molecular weight in recombinmnant Escherichia coli. ACS Chem Biol 8(11):2568–2576

    Article  CAS  PubMed  Google Scholar 

  121. Shi F, Gross RA, Rutherford DR (1996) Microbial polyester synthesis: effects of poly(ethylene glycol) on product composition, repeat unit sequence, and end group structure. Macromolecules 29(1):10–17

    Article  CAS  Google Scholar 

  122. Ashby RD, Shi F, Gross RA (1997) Use of poly(ethylene glycol) to control the end group structure and molecular weight of poly(3-hydroxybutyrate) formed by Alcaligenes latus DSM 1122. Tetrahedron 53(45):15209–15223

    Article  CAS  Google Scholar 

  123. Tomizawa S, Saito Y, Hyakutake M, Nakamura Y, Abe H, Tsuge T (2010) Chain transfer reaction catalyzed by various polyhydroxyalkanoate synthases with poly(ethylene glycol) as an exogenous chain transfer agent. Appl Microbiol Biotechnol 87(4):1427–1435

    Article  CAS  PubMed  Google Scholar 

  124. Thomson NM, Hiroe A, Tsuge T, Summers DK, Sivaniah E (2014) Efficient molecular weight control of bacterially synthesized polyesters by alcohol supplementation. J Chem Technol Biotechnol 89(7):1110–1114

    Article  CAS  Google Scholar 

  125. Utsunomia C, Hori C, Matsumoto K, Taguchi S (2017) Investigation of the Escherichia coli membrane transporters involved in the secretion of D-lactate-based oligomers by loss-of-function screening. J Biosci Bioeng 124(6):635–640

    Article  CAS  PubMed  Google Scholar 

  126. Utsunomia C, Matsumoto K, Date S, Hori C, Taguchi S (2017) Microbial secretion of lactate-enriched oligomers for efficient conversion into lactide: a biological shortcut to polylactide. J Biosci Bioeng 124(2):204–208

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiichi Taguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nduko, J.M., Taguchi, S. (2019). Microbial Production and Properties of LA-based Polymers and Oligomers from Renewable Feedstock. In: Fang, Z., Smith, Jr, R., Tian, XF. (eds) Production of Materials from Sustainable Biomass Resources . Biofuels and Biorefineries, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-13-3768-0_12

Download citation

Publish with us

Policies and ethics