Skip to main content

Biological Control of Nematodes by Plant Growth Promoting Rhizobacteria: Secondary Metabolites Involved and Potential Applications

  • Chapter
  • First Online:
Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms

Abstract

Plant-parasitic nematodes are one of the most destructive agronomic pests. During several decades, the control of this pest on agricultural crops has depended on chemical pesticides. These chemicals are very toxic with high potential to pollute the environment. Nowadays, the search for substitute products has become a priority. In this sense, the biological control agents have arisen as an environmentally friendly alternative. Different rhizobacterial strains are able to control nematodes improving plant health through the production of secondary metabolites. The aim of this chapter is to review the secondary metabolites produced by rhizospheric bacteria involved in the controlĀ of plant-parasitic nematodes. The use of these compounds could help to overcome the problem related with the survival of the biocontrol agents when introduced in new ecosystems. In the same way, the study of the metabolic pathways that lead to the production of these compounds can help to discern the conditions to trigger their production and its consequent activity in the rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aballay E, Prodan S, Zamorano A, Castaneda-Alvarez C (2017) Nematicidal effect of rhizobacteria on plant-parasitic nematodes associated with vineyards. World J Microbiol Biotechnol 33(7):131

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Abbasi M, Ahmed N, Zaki M, Shuakat S, Khan D (2014) Potential of Bacillus species against Meloidogyne javanica parasitizing eggplant (Solanum melongena L.) and induced biochemical changes. Plant Soil 375(1/2):159ā€“173

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4 Suppl):1044ā€“1051

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bravo A, Sarabia S, Lopez L, Ontiveros H, Abarca C, Ortiz A (1998) Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl Environ Microbiol 64:4965ā€“4972

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bravo A, Gill SS, Sobero M (2007) Mode of action of Bacillus thuringiensis cry and Cyt toxins and their potential for insect control. Toxicon 49(4):423ā€“435

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Carbonero F, Benefiel AC, Alizadeh-Ghamsari AH, Gaskins HR (2012) Microbial pathways in colonic sulfur metabolism and links with health and disease. Front Physiol 3:448. https://doi.org/10.3389/fphys.2012.00448

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Castaneda-Alvarez C, Prodan S, Rosales IM, Aballay E (2016) Exoenzymes and metabolites related to the nematicidal effect of rhizobacteria on Xiphinema index Thorne & Allen. J Appl Microbiol 120(2):413ā€“424

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • de Souza JT, Weller DM, Raaijmakers JM (2003) Frequency, diversity, and activity of 2,4-Diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in dutch take-all decline soils. Phytopathology 93(1):54ā€“63

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Demain AL, Fang A (2000) The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol 69:1ā€“39

    CASĀ  PubMedĀ  Google ScholarĀ 

  • El-Hadad ME, Mustafa MI, Selim SM, Mahgoob AEA, El-Tayeb TS, Abdel Aziz NH (2010) In vitro evaluation of some bacterial isolates as biofertilizers and biocontrol agents against the second stage juveniles of Meloidogyne incognita. World J Microbiol Biotechnol 26:2249ā€“2256

    ArticleĀ  Google ScholarĀ 

  • Frankenhuyzen K (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101(1):1ā€“16

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Gallagher LA, Manoil C (2001) Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 183(21):6207ā€“6214

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Galper S, Cohn E, Chet I (1990) Nematicidal effect of collagen amended soil and the influence of protease and collagenase. Rev Nematol 13:67ā€“71

    CASĀ  Google ScholarĀ 

  • Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169(1):13ā€“22

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gao H, Qi G, Yin R, Zhang H, Li C, Zhao X (2016) Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine. Sci Rep 6:28756. https://doi.org/10.1038/srep28756

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Geng C, Nie X, Tang Z, Zhang Y, Lin J, Sun M, Peng D (2016) A novel serine protease, Sep1, from Bacillus firmus DS-1 has nematicidal activity and degrades multiple intestinal-associated nematode proteins. Sci Rep 6:25012

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Glick B (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30ā€“33

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Guo S, Liu M, Peng D, Ji S, Wang P, Yu Z, Sun M (2008) New strategy for isolating novel nematicidal crystal protein genes from Bacillus thuringiensis strain YBT-1518. Appl Environ Microbiol 74(22):6997ā€“7001

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Huang X, Tian B, Niu Q, Yang J, Zhang L, Zhang K (2005) An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes. Res Microbiol 156:719ā€“727

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Huang Y, Xu C, Ma L, Zhang K, Duan C, Mo M (2010) Characterization of volatiles produced from Bacillus megaterium YFM 3.25 and their nematicidal activity against Meloidogyne incognita. Eur J Plant Pathol 126:417ā€“422

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Iatsenko I, Boichenko I, Sommer RJ (2014) Bacillus thuringiensis DB27 produces two novel protoxins, Cry21Fa1 and Cry21Ha1, which act synergistically against nematodes. Goodrich-Blair H, ed. J Appl Environ Microbiol 80(10):3266ā€“3275

    ArticleĀ  Google ScholarĀ 

  • Johnstone IL (1994) The cuticle of the nematode Caenorhabditis elegans: a complex collagen structure. BioEssays 16:171ā€“178

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ju S, Lin J, Zheng J, Wang S, Zhou H, Sun M (2016) Alcaligenes faecalis ZD02, a novel nematicidal bacterium with an extracellular serine protease virulence factor. J Appl Environ Microbiol 82(7):2112ā€“2120

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jung WJ, Kim KY, Park YS et al (2014) Purification and properties of a Meloidogyne antagonistic chitinase from Lysobacter capsici YS1215. Nematology 16:63ā€“72

    ArticleĀ  Google ScholarĀ 

  • Kempster VN, Davies KA, Scott ES (2001) Chemical and biological induction of resistance to the clover cyst nematode (Heterodera trifolii) in white clover (Trifolium repens). Nematology 3:35ā€“43

    ArticleĀ  Google ScholarĀ 

  • Kokalis-Burelle N (2015) Pasteuria penetrans for control of Meloidogyne incognita on tomato and cucumber, and M. arenaria on snapdragon. J Nematol 47(3):207ā€“213

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Krechel A, Faupel A, Hallmann J, Ulrich A, Berg G (2002) Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can J Microbiol 48(9):772ā€“786

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lee YS, Nguyen XH, Naing KW et al (2014) Role of lytic enzymes secreted by Lysobacter capsici YS1215 in the control of root-knot nematode of tomato plants. Indian J Microbiol 55:74ā€“80

    ArticleĀ  Google ScholarĀ 

  • Li XQ, Tan A, Voegtline M, Bekele S, Chen CS, Aroian RV (2008) Expression of Cry5B protein from Bacillus thuringiensis in plant roots confers resistance to root-knot nematode. BioControl 47:97ā€“102

    Google ScholarĀ 

  • Li L, Ma M, Liu Y, Zhou J, Qu Q, Lu K, Fu D, Zhang K (2011) Induction of trap formation in nematode-trapping fungi by a bacterium. FEMS Microbiol Lett 322:157ā€“151

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lian LH, Tian BY, Xiong R et al (2007) Proteases from Bacillus: a new insight into the mechanism of action for rhizobacterial suppression of nematode populations. Lett Appl Microbiol 45:262ā€“269

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu X, Xiang M, Che Y (2009) The living strategy of nematophagous fungi. Mycoscience 50(1):20ā€“25

    ArticleĀ  Google ScholarĀ 

  • Liu XY, Ruan LF, Hu ZF, Peng DH, Cao SY, Yu ZN, Liu Y, Zheng JS, Sun M (2010) Genome-wide screening reveals the genetic determinants of an antibiotic insecticide in Bacillus thuringiensis. J Biol Chem 285(50):39191ā€“39200

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Liu Z, Budiharjo A, Wang P, Shi H, Fang J, Borriss R et al (2013) The highly modified microcin peptide plantazolicin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42. Appl Microbiol Biotechnol 97:10081ā€“10090

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Luo X, Chen L, Huang Q et al (2013a) Bacillus thuringiensis metalloproteinase Bmp1 functions as a nematicidal virulence factor. J Appl Environ Microbiol 79(2):460ā€“468

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Luo X, Chen L, Huang Q, Zheng J, Zhou W, Peng D, Ruan L, Sun M (2013b) Bacillus thuringiensis metalloproteinase Bmp1 functions as a nematicidal virulence factor. J Appl Environ Microbiol 79(2):460ā€“468

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193ā€“199

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Marin M, Mena J, Franco R, Pimentel E, SĆ”nchez I (2010) Effects of the bacterial-fungal interaction between Tsukamurella paurometabola C 924 and Glomus fasciculatum and Glomus clarum fungi on lettuce mycorrhizal colonization and foliar weight. Biotecnol Apl 27(1):48ā€“51

    Google ScholarĀ 

  • Marroquin LD, Elyassnia D, Griffitts JS, Feitelson JS, Aroian RV (2000) Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics 155:1693ā€“1699

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • McSorley R (2011) Overview of organic amendments for management of plant-parasitic nematodes, with case studies from Florida. J Nematol 43:69ā€“81

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Meadows R (2013) Researchers develop alternatives to methyl bromide fumigation. Calif Agric 67(3):125ā€“127. https://doi.org/10.3733/ca.v067n03p125

    ArticleĀ  Google ScholarĀ 

  • Mendoza A, Kiewnick S, Sikora R (2008) In vitro activity of Bacillus firmus against the burrowing nematode Radopholus similis, the root-knot nematode Meloidogyne incognita and the stem nematode Ditylenchus dipsaci. Biocontrol Sci Tech 18(4):377ā€“389

    ArticleĀ  Google ScholarĀ 

  • Mercer CF, Greenwood DR, Grant JL (1992) Effect of plant and microbial chitinases on the eggs and juveniles of Meloidogyne hapla Chitwood. Nematologica 38:227ā€“236

    ArticleĀ  Google ScholarĀ 

  • Meyer SLF, Halbrendt JM, Carta LK et al (2009) Toxicity of 2,4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterial-feeding nematodes. J Nematol 41(4):274ā€“280

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Miller PM, Sands DC (1977) Effects of hydrolytic enzymes on plant-parasitic nematodes. J Nematol 9:192ā€“197

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Mota MS, Gomes CB, Souza J, Moura AB (2017) Bacterial selection for biological control of plant disease: criterion determination and validation. Braz J Microbiol 48(1):62ā€“70

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nandi M, Selin C, Brassinga AKC et al (2015) Pyrrolnitrin and hydrogen cyanide production by Pseudomonas chlororaphis strain PA23 exhibits nematicidal and repellent activity against Caenorhabditis elegans. PLoS One 10(4):e0123184. https://doi.org/10.1371/journal.pone.0123184

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Nascimento FX, Vicente CSL, Barbosa P, Espada M, Glick BR, Oliveira S, Mota M (2013) The use of the ACC deaminase producing bacterium Pseudomonas putida UW4 as a biocontrol agent for pine wilt disease. BioControl 58:427ā€“433

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Nikoo S, Sahebani N, Aminian H et al (2014) Induction of systemic resistance and defense-related enzymes in tomato plants using Pseudomonas fluorescens CHAO and salicylic acid against root-knot nematode Meloidogyne javanica. J Plant Protect Res 54(4):383ā€“389

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Niu Q, Huang X, Zhang L et al (2006) A neutral protease from Bacillus nematocida, another potential virulence factor in the infection against nematodes. Arch Microbiol 185:439ā€“448

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Niu Q, Huang X, Zhang L, Xu J, Yang D, Wei K, Niu X, An Z, Wennstrom Bennett J, Zou C, Yang J, Zhang KQ (2010) A Trojan horse mechanism of bacterial pathogenesis against nematodes. PNAS 107(38):16631ā€“16636

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Oliveira DF et al (2009) Activity of amino acids produced by Paenibacillus macerans and from commercial sources against the root-knot nematode Meloidogyne exigua. Eur J Plant Pathol 124(1):57ā€“63

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Oliveira DF, Santos Junior HM, Dos Nunes AS et al (2014) Purification and identification of metabolites produced by Bacillus cereus and B. subtilis active against Meloidogyne exigua, and their in silico interaction with a putative phosphoribosyltransferase from M. incognita. An Acad Bras Cienc 86:525ā€“538

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Olson S (2015) An analysis of the biopesticide market now and where it is going. The biopesticide market. Outlooks Pest Manage 26:203ā€“206. https://doi.org/10.1564/v26_oct_04

    ArticleĀ  Google ScholarĀ 

  • Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: natureā€™s diversity and ingenuity. Science 311:808ā€“811

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Rodriguez-Kabana R (1986) Organic and inorganic nitrogen amendments to soil as nematode suppressants. J Nematol 18(2):129ā€“134

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Rodriguez-Kabana R, Jordan JW, Hollis JP (1965) Nematodes: biological control in rice fields: role of hydrogen sulfide. Science 148(3669):524ā€“526

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rucker CJ, Zachariah K (1986) The influence of bacteria on trap induction in predacious hyphomycetes. Can J Bot 65:1160ā€“1162

    ArticleĀ  Google ScholarĀ 

  • Siddiqui ZA, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes: a review. Bioresour Technol 69(2):167ā€“179

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Siddiqui IA, Shaukat SS (2003) Plant species, host age and host genotype effects on Meloidogyne incognita biocontrol by Pseudomonas fluorescens strain CHA0 and its genetically-modified derivatives. J Phytopathol 151:231ā€“238

    ArticleĀ  Google ScholarĀ 

  • Siddiqui I, Haas D, Heeb S (2005) Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl Environ Microbiol 71(9):5646ā€“5649

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Siddiqui IA, Shaukat SS, Sheikh IH, Khan A (2006) Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J Microbiol Biotechnol 22:641ā€“650

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Singh S, Singh B, Singh AP (2015) Nematodes: a threat to sustainability of agriculture. Procedia Environ Sci 29:215ā€“216

    ArticleĀ  Google ScholarĀ 

  • Singh HB, Sarma BK, Keswani C (eds) (2016) Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, Singapore

    Google ScholarĀ 

  • Singh HB, Sarma BK, Keswani C (eds) (2017) Advances in PGPR. CABI, Wallingford

    Google ScholarĀ 

  • Su HN, Xu YY, Wang X, Zhang KQ, Li GH (2016) Induction of trap formation in nematode-trapping fungi by bacteria-released ammonia. Lett Appl Microbiol 62(4):349ā€“353

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Tian BY, Li N, Lian LH, Liu JW, Yang JK, Zhang KQ (2006) Cloning, expression and deletion of the cuticle-degrading protease BLG4 from nematophagous bacterium Brevibacillus laterosporus G4. Arch Microbial 186:297ā€“305

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tian BY, Yang JK, Lian LH, Wang CY, Li N, Zhang KQ (2007) Role of neutral protease from Brevibacillus laterosporus in pathogenesis of nematode. Appl Microbiol Biotechnol 74:372ā€“380

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • van Loon LC, Bakker PA, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453ā€“483

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Vleesschauwer D, Hƶfte M (2009) Rhizobacteria-induced systemic resistance. Adv Bot Res 51:223ā€“281

    ArticleĀ  Google ScholarĀ 

  • Wang X, Li GH, Zou CG, Ji XL, Liu T, Zhao PJ, Liang LM, Xu JP, An ZQ, Zheng X, Qin YK, Tian MQ, Xu YY, Ma YC, Yu ZF, Huang XW, Liu SQ, Niu XM, Yang JK, Huang Y, Zhang KQ (2014) Bacteria can mobilize nematode-trapping fungi to kill nematodes. Nat Commun 16(5):5776. https://doi.org/10.1038/ncomms6776

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wharton D (1980) Nematode egg shells. Parasitology 81(2):447ā€“463

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Woo Jin J, Jung SJ, Park RD et al (2002) Effect of chitinase produced form Paenibacillus illinoisensis on egg hatching of root-knot nematode, Meloidogyne spp. J Microbiol Biotechnol 12:865ā€“871

    Google ScholarĀ 

  • Xu YY, Lu H, Wang X, Zhang KQ, Li GH (2015) Effect of volatile organic compounds from bacteria on nematodes. Chem Biodivers 12:1415ā€“1421

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yang LL, Huang Y, Liu J, Ma L, Mo MH, Li WJ, Yang FX (2012) Lysinibacillus mangiferahumi sp. nov., a new bacterium producing nematicidal volatiles. Antonie Van Leeuwenhoek 102(1):53ā€“59

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yang J, Liang L, Li J, Zhang KQ (2013) Nematicidal enzymes from microorganisms and their applications. Appl Microbiol Biotechnol 97:7081ā€“7095

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yoon GY, Lee YS, Lee SY, Park RD, Hyun HN, Nam Y, Kim KY (2012) Effects on of chitinase, glucanase and a secondary metabolite from GY525. Nematology 14:175ā€“184

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zasada I, Halbrendt J, Kokalis-Burelle N, LaMondia J, McKenry M, Noling J (2010) Managing nematodes without methyl bromide. Annu Rev Phytopathol 48(1):311ā€“328

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zheng Z, Zheng J, Zhang Z, Peng D, Sun M (2016) Nematicidal spore-forming bacilli share similar virulence factors and mechanisms. Sci Rep 6:31341. https://doi.org/10.1038/srep31341

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marieta Marin-Bruzos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marin-Bruzos, M., Grayston, S.J. (2019). Biological Control of Nematodes by Plant Growth Promoting Rhizobacteria: Secondary Metabolites Involved and Potential Applications. In: Singh, H., Keswani, C., Reddy, M., Sansinenea, E., GarcĆ­a-Estrada, C. (eds) Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms. Springer, Singapore. https://doi.org/10.1007/978-981-13-5862-3_13

Download citation

Publish with us

Policies and ethics