Skip to main content

Effect of Temperature on Phase Formation in Thin Bilayer Ni/GaAs Films

  • Conference paper
  • First Online:
Advances in Thin Films, Nanostructured Materials, and Coatings

Abstract

The results of a study of the effect of sample condensation conditions and annealing temperature on the phase composition of bilayer Ni/GaAs films are presented. A layer of GaAs was deposited at room temperature and a layer of nickel at different substrate temperatures. The temperature intervals for the existence of a low-temperature amorphous phase and an intermediate phase of the ternary Ni3GaAs system were established by means of electron diffraction studies. The Ni3GaAs phase decomposes into the phases of the binary systems NiAs and γ-Ni3Ga2 with increasing temperature. Annealing of the films or an increase in the temperature of the substrate during their condensation causes a decrease in the crystallization and phase decomposition temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Melebaev D, Melebaeva GD, Rud VY et al (2009) Photosensitivity of the Ni-n-GaAs Schottky barriers. Semiconductors 43(1):29–32. https://doi.org/10.1134/S1063782609010072

    Article  CAS  Google Scholar 

  2. Yildirim N, Korkut H, Türüt A (2009) Temperature-dependent Schottky barrier inhomogeneity of Ni/n-GaAs diodes. EPJ AP 45(1): 10302-1–10302-7. https://doi.org/10.1051/epjap:2008191

  3. Filippov DA, Firsova TO, Laletin VM et al (2017) The magnetoelectric effect in nickel–GaAs–nickel structures. Tech Phys Lett +43(3): 313–315. https://doi.org/10.1134/S106378501703018X

  4. Soda T, Minakawa S, Futamoto M et al (2018) Structure characterization of Fe Co, and Ni thin films epitaxially grown on GaAs (111) substrate. JMSJ 42(2):30–36. https://doi.org/10.3379/msjmag.1803R005

    Article  CAS  Google Scholar 

  5. Dukarov SV, Pojda VP, Churilov IG (2017) Wetting of nickel films of variable thickness by island lead condensates. In: Proceedings of the 2017 IEEE 7th international conference on nanomaterials: applications & properties (NAP-2017) Part 1, Zatoka, Ukraine, 10–15 Sept, 2017, p 01PCSI08. https://doi.org/10.1109/NAP.2017.8190145

  6. Gladkikh NT (ed), Dukarov SV, Kryshal AP, Larin VI, Sukhov VN, Bogatyrenko SI (2004) Poverkhnostnye yavleniya i fazovye prevrashcheniya v kondensirovannykh plenkakh (Surface phenomena and phase transformations in condensed films). V. N. Karazin Kharkiv National University, Kharkiv. (in Russian)

    Google Scholar 

  7. Kryshal AP, Bogatyrenko SI, Sukhov RV et al (2014) The kinetics of the formation of a solid solution in an Ag–Pd polycrystalline film system. Appl Phys A 116(4):1891–1896. https://doi.org/10.1007/s00339-014-8349-8

    Article  CAS  Google Scholar 

  8. Dukarov SV, Petrushenko SI, Sukhov VN et al (2016) In situ research on temperature dependence of the lattice parameters of fusible metals in thin Cu-Pb and Cu-Bi films. Funct Mater 23(2):218–223. http://dx.doi.org/10.15407/fm23.02.218

  9. Gladkikh NT, Dukarov SV, Sukhov VN et al (2011) Condensation mechanism of AgCl and NaCl island films on a nickel substrate. Funct Mater 18(4):529–533

    CAS  Google Scholar 

  10. Dukarov SV, Petrushenko SI, Sukhov VN (2018) Growth of island films during vapor-liquid condensation. J Nano-Electron Phys 10(1):01023. https://doi.org/10.21272/jnep.10(1).01023

  11. Petrushenko SI, Dukarov SV, Sukhov VN (2016) Effect of lead on the thermal dispersion of continuous polycrystalline copper films. Vacuum 142:29–36. https://doi.org/10.1016/j.vacuum.2017.04.037

    Article  CAS  Google Scholar 

  12. Petrushenko SI, Dukarov SV, Sukhov VN (2016) Growth of through pores and thermal dispersion of continuous polycrystalline films of copper. Metallofizika i Noveishie Tekhnologii 38(10):1351–1366. (In Ukrainian). https://doi.org/10.15407/mfint.38.10.1351

  13. Petrushenko SI, Dukarov SV, Sukhov VN et al (2015) Inner size effect in the polycrystalline metal films of fusible metals. J Nano-Electron Phys 7(2):02033

    Google Scholar 

  14. Hollan L, Hallais JP, Brice JC (1980) The preparation of gallium arsenide. In: Kaldis E (ed) Current topics in materials science, vol 5. Elsevier North-Holland, Inc., pp 1–217. https://doi.org/10.1002/bbpc.19810850426

  15. Okamoto H (2000) Desk handbook. Phase diagrams for binary alloys. ASM International, Ohio

    Google Scholar 

  16. Vol AE (1962) Stroenie i svojstva dvojnykh metallicheskikh sistem (The structure and properties of binary metal systems). GIFML, Moscow [In Russian]

    Google Scholar 

  17. Lyakishev NP (2001) Phase diagrams of binary metal systems. Mashinostroenie, Moscow

    Google Scholar 

  18. Schubert K (1964) Kristallstrukturen zweikomponentiger Phasen. Springer-Verlag, Berlin

    Google Scholar 

  19. Sands T, Keramidas VG, Washburn J et al (1986) Structure and composition of NixGaAs. Appl Phys Lett 48(6):402–404. https://doi.org/10.1063/1.96511

    Article  CAS  Google Scholar 

  20. Rabhi S, Perrin-Pellegrino C, Zhiou S et al (2017) Phase formation between Ni thin films and GaAs substrate. Scripta Mater 141:28–31. https://doi.org/10.1016/j.scriptamat.2017.07.011

    Article  CAS  Google Scholar 

  21. Kryshtal AP, Minenkov AA, Ferreira PJ (2017) Interfacial kinetics in nanosized Au/Ge films: an in situ TEM study. Appl Surf Sci 409:343–349. https://doi.org/10.1016/j.apsusc.2017.03.037

    Article  CAS  Google Scholar 

  22. Kryshtal AP, Minenkov AA, Bogatyrenko SI (2018) Effect of size on phase transformation temperatures in Ge/Bi/Ge films. J Alloy Compd 756:50–56. https://doi.org/10.1016/j.jallcom.2018.04.335

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Education and Science of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Dukarov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dukarov, S.V., Petrushenko, S.I., Miroshnychenko, V.V., Nevgasimov, O.O., Sukhov, V.N. (2019). Effect of Temperature on Phase Formation in Thin Bilayer Ni/GaAs Films. In: Pogrebnjak, A.D., Novosad, V. (eds) Advances in Thin Films, Nanostructured Materials, and Coatings. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-6133-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6133-3_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6132-6

  • Online ISBN: 978-981-13-6133-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics