Skip to main content

Microstructure and Mechanical Properties of Multilayered α-AlN/α-BCN Coatings Depending on Flux Density During Target B4C Sputtering

  • Conference paper
  • First Online:
Advances in Thin Films, Nanostructured Materials, and Coatings

Abstract

Multilayered AlN/BCN coatings with nanoscale layers were fabricated by magnetron sputtering of Al and B4C targets on Si substrate. Deposited amorphous AlN/BCN coatings have demonstrated increased nano- and Knoop hardnesses, Young’s modulus in compare with AlN and BCN coatings, which explained by strain modulation in amorphous layers of AlN and BCN. The application of flux density IB4C (100 mA) has led to significant increasing of hardness from 18 to 27 GPa due to the formation of α-BCN phase according to Fourier spectra. Nanolayered coatings have been thermally stable up to 600 °C due to the slow diffusion processes in amorphous sublayer, which indicates higher oxidation resistance then nanocrystalline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pogrebnjak AD, Beresnev VM, Smyrnova KV et al (2018) The influence of nitrogen pressure on the fabrication of the two-phase superhard nanocomposite (TiZrNbAlYCr)N coatings. Mater Lett 211:316–318. https://doi.org/10.1016/j.matlet.2017.09.121

    Article  CAS  Google Scholar 

  2. Pogrebnjak AD, Beresnev VM, Bondar OV et al (2018) Superhard CrN/MoN coatings with multilayer architecture. Mater Des 153:47–59. https://doi.org/10.1016/j.matdes.2018.05.001

  3. Maksakova O, Simoẽs S, Pogrebnjak A et al (2018) The influence of deposition conditions and bilayer thickness on physical-mechanical properties of CA-PVD multilayer ZrN/CrN coatings. Mater Charact 140:189–196. https://doi.org/10.1016/j.matchar.2018.03.048

  4. Kadyrzhanov EY, Zdorovets DB, Kozlovskiy M et al (2018) Influence of ionizing irradiation on the parameters of Zn nanotubes arrays for design of flexible electronics elements. Devices Methods Meas 9(1):66–73. https://doi.org/10.21122/2220-9506-2018-9-1-66-73

    Google Scholar 

  5. Ivashchenko VI, Veprek S, Turchi PEA et al (2012) First-principles study of TiN/SiC/TiN interfaces in superhard nanocomposites. Phys Rev B 86(1):14110. https://doi.org/10.1103/PhysRevB.86.014110

  6. Pogrebnjak AD, Ponomarev AG, Shpak AP et al (2012) Application of micro- and nanoprobes to the analysis of small-sized 3D materials, nanosystems, and nanoobjects. Phys Usp 55(3):270. Available at: http://stacks.iop.org/1063-7869/55/i=3/a=A04

  7. Boiko O, Koltunowicz TN, Zukowski P et al (2017) The effect of sputtering atmosphere parameters on dielectric properties of the ferromagnetic alloy—ferroelectric ceramics nanocomposite (FeCoZr)x(PbZrTiO3)(100−x). Ceram Int 43(2):2511–2516. https://doi.org/10.1016/j.ceramint.2016.11.052

  8. Van Bui H, Wiggers FB, Gupta A et al (2015) Initial growth, refractive index, and crystallinity of thermal and plasma-enhanced atomic layer deposition AlN films. J Vac Sci Technol A Vac, Surfaces, Film 33(1):01A111. https://doi.org/10.1116/1.4898434

  9. Banal RG, Imura M, Liu J et al (2016) Structural properties and transfer characteristics of sputter deposition AlN and atomic layer deposition Al2O3 bilayer gate materials for H-terminated diamond field effect transistors. J Appl Phys 120(11):115307. https://doi.org/10.1063/1.4962854

  10. Aissa KA, Achour A, Camus J et al (2014) Comparison of the structural properties and residual stress of AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering at different working pressures. Thin Solid Films 550:264–267. https://doi.org/10.1016/j.tsf.2013.11.073

    Article  Google Scholar 

  11. Shin I, Kim J, Lee D et al (2018) Epitaxial growth of single-crystalline AlN layer on Si(111) by DC magnetron sputtering at room temperature. Jpn J Appl Phys 57(6):060306. https://doi.org/10.7567/JJAP.57.060303

    Article  Google Scholar 

  12. Su X, Zhang J, Huang J et al (2017) Defect structure of high temperature hydride vapor phase epitaxy–grown epitaxial (0 0 0 1) AlN/sapphire using growth mode modification process. J Cryst Growth 467(1):82–87. https://doi.org/10.1016/j.jcrysgro.2017.03.031

  13. Trant M, Fischer M, Thorwarth K et al (2018) Tunable ion flux density and its impact on AlN thin films deposited in a confocal DC magnetron sputtering system. Surf Coatings Technol 348:159–167. https://doi.org/10.1016/j.surfcoat.2018.04.091

  14. Wang H, Sodabanlu H, Daigo Y et al (2016) Initial growth control of GaN on Si with physical-vapor-deposition-AlN seed layer for high-quality GaN templates. Appl Phys Express 9(5):055503. https://doi.org/10.7567/APEX.9.055503

    Article  Google Scholar 

  15. Murillo AE, Melo-Máximo L, García-Farrera B et al (2018) Development of AlN thin films for breast cancer acoustic biosensors. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2018.02.007

  16. Welz R, Howell K, Luis P (2018) Optimization of sputter deposition Process for piezoelectric AlN ultra-thin Films. Semester Project Advanced NEMS group, Autumn Semester 2017, Losanna, Jan 2018

    Google Scholar 

  17. Riah B, Ayad A, Camus J et al (2018) Textured hexagonal and cubic phases of AlN films deposited on Si (100) by DC magnetron sputtering and high power impulse magnetron sputtering. Thin Solid Films 655(100):34–40. https://doi.org/10.1016/j.tsf.2018.03.076

  18. Pu K, Dai X, Miao D et al (2017) A kinetics model for MOCVD deposition of AlN film based on Grove theory. J Cryst Growth 478:42–46. https://doi.org/10.1016/j.jcrysgro.2017.08.012

  19. Wistrela E, Schneider M, Bittner A et al (2016) Impact of the substrate dependent polarity distribution in c-axis oriented AlN thin films on the etching behaviour and the piezoelectric properties. Microsyst Technol 22(7):1691–1700. https://doi.org/10.1007/s00542-015-2799-6

  20. Balaji M, Ramesh R, Arivazhagan P et al (2015) Influence of initial growth stages on AlN epilayers grown by metal organic chemical vapor deposition. J Cryst Growth 414:69–75. https://doi.org/10.1016/j.jcrysgro.2014.10.055

  21. Aissa KA, Achour A, Elmazria O et al (2015) AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering for SAW applications. J Phys D Appl Phys 48(14):145307. https://doi.org/10.1088/0022-3727/48/14/145307

  22. Duta L, Stan GE, Stroescu H et al (2016) Multi-stage pulsed laser deposition of aluminum nitride at different temperatures. Appl Surf Sci 374:143–150. https://doi.org/10.1016/j.apsusc.2015.10.093

  23. D’Acapito F, Torrengo S, Xenogiannopoulou E et al (2016) Evidence for Germanene growth on epitaxial hexagonal (h)-AlN on Ag(1 1 1). J Phys Condens Matter 28(4):45002. https://doi.org/10.1088/0953-8984/28/4/045002

  24. Wang H, Liu Y, Li M et al (2010) Multifunctional TiO2nanowires-modified nanoparticles bilayer film for 3D dye-sensitized solar cells. Optoelectron Adv Mater Rapid Commun 4(8):1166–1169. https://doi.org/10.1039/b000000x

  25. Kohout J, Qian J, Schmitt T et al (2017) Hard AlN films prepared by low duty cycle magnetron sputtering and by other deposition techniques. J Vac Sci Technol A Vacuum, Surfaces, Film 35(6):61505. https://doi.org/10.1116/1.4999460

  26. Caban P, Rudzinski M, Wojcik M et al (2015) Growth of aluminium nitride with linear change of ammonia flow. J Cryst Growth 414:81–86. https://doi.org/10.1016/j.jcrysgro.2014.11.015

  27. Iqbal A, Walker G, Iacopi A et al (2016) Controlled sputtering of AlN (002) and (101) crystal orientations on epitaxial 3C-SiC-on-Si (100) substrate. J Cryst Growth 440(2):76–80. https://doi.org/10.1016/j.jcrysgro.2016.01.037

  28. Ji Z, Wang L, Zhao G et al (2017) Growth and characterization of AlN epilayers using pulsed metal organic chemical vapor deposition. Chin Phys B 26(7):078102. https://doi.org/10.1088/1674-1056/26/7/078102

    Article  Google Scholar 

  29. Huang WC, Chu CM, Wong YY et al (2016) Investigations of GaN growth on the sapphire substrate by MOCVD method with different AlN buffer deposition temperatures. Mater Sci Semicond Process 45:1–8. https://doi.org/10.1016/j.mssp.2016.01.008

  30. Motamedi P, Cadien K (2015) Structural and optical characterization of low-temperature ALD crystalline AlN. J Cryst Growth 421:45–52. https://doi.org/10.1016/j.jcrysgro.2015.04.009

  31. Mazur MM, Pianaro SA, Portella KF et al (2015) Deposition and characterization of AlN thin films on ceramic electric insulators using pulsed DC magnetron sputtering. Surf Coatings Technol 284:247–251. https://doi.org/10.1016/j.surfcoat.2015.06.082

  32. Li XH, Wei YO, Wang S et al (2015) Temperature dependence of the crystalline quality of AlN layer grown on sapphire substrates by metalorganic chemical vapor deposition. J Cryst Growth 414:76–80. https://doi.org/10.1016/j.jcrysgro.2014.10.007

  33. Moreira MA, Törndahl T, Katardjiev I et al (2015) Deposition of highly textured AlN thin films by reactive high power impulse magnetron sputtering. J Vac Sci Technol A Vacuum, Surfaces, Film 33(2):21518. https://doi.org/10.1116/1.4907874

  34. Schmerler S, Kortus J (2014) Ab initio study of AlN: anisotropic thermal expansion, phase diagram, and high-temperature rocksalt to wurtzite phase transition. Phys Rev B—Condens Matter Mater Phys 89(6):064109. https://doi.org/10.1103/PhysRevB.89.064109

    Article  Google Scholar 

  35. Sun X, Li JS, Cheng HF (2015) Influence of temperatures on the formation of SiBCN powders prepared by CVD Using Borazine and Liquid Polycarbosilane. Mater Sci Forum 816:182–185. https://doi.org/10.4028/www.scientific.net/MSF.816.182

  36. Prakash A, Sundaram KB (2016) Deposition and XPS studies of dual sputtered BCN thin films. Diam Relat Mater 64:80–88. https://doi.org/10.1016/j.diamond.2016.01.014

  37. Xiao JL, Wang CB, Shen Q et al (2015) Influence of nitrogen pressure on bonding structure and mechanical properties of pulsed laser deposited BCN thin films. Surf Coatings Technol 276:141–144. https://doi.org/10.1016/j.surfcoat.2015.06.070

  38. Wang CB, Xiao JL, Shen Q et al (2016) Bonding structure and mechanical properties of B-C-N thin films synthesized by pulsed laser deposition at different laser fluences. Thin Solid Films 603:323–327. https://doi.org/10.1016/j.tsf.2016.02.053

  39. Tavsanoglu T, Jeandin M, Addemir O (2016) Synthesis and characterisation of thin films in the B–C–N triangle. Surf Eng 32(10):755–760. https://doi.org/10.1080/02670844.2016.1143197

  40. Zhang T, Zhang J, Wen G et al (2018) Ultra-light h-BCN architectures derived from new organic monomer with tunable electromagnetic wave absorption. Carbon 136:345–358. https://doi.org/10.1016/j.carbon.2018.05.001

    Article  CAS  Google Scholar 

  41. Xu S, Ma X, Tang G et al (2015) Air annealing effect on scratch behaviour of BCN films. Surf Eng 31(7):1–7. https://doi.org/10.1179/1743294414y.0000000447

  42. Xing M, Li B, Yu Z et al (2016) Elastic anisotropic and thermodynamic properties of I-4m2-BCN. Acta Phys Pol A 129(6):1124–1130. https://doi.org/10.12693/aphyspola.129.1124

  43. Chen D, Huang Y, Hu X et al (2018) Synthesis and characterization of “Ravine-Like” BCN compounds with high capacitance. Materials (Basel) 11(2):209. https://doi.org/10.3390/ma11020209

  44. Hirte T, Feuerfeil R, Perez-Solorzano V et al (2015) Influence of composition on the wear properties of boron carbonitride (BCN) coatings deposited by high power impulse magnetron sputtering. Surf Coatings Technol 284:94–100. https://doi.org/10.1016/j.surfcoat.2015.07.077

  45. Deng X, Kousaka H, Tokoroyama T et al (2014) Deposition and tribological behaviors of ternary BCN coatings at elevated temperatures. Surf Coatings Technol 259:2–6. https://doi.org/10.1016/j.surfcoat.2014.08.087

  46. Mannan A, Baba Y, Kida T et al (2015) Synthesis of Hexagonal boron carbonitride without nitrogen void defects. MSA 6(05):353–359. https://doi.org/10.4236/msa.2015.65041

    Article  CAS  Google Scholar 

  47. Li Y, Jia X, Shi W et al (2014) The preparation of new “BCN” diamond under higher pressure and higher temperature. Int J Refract Met Hard Mater 43:147–149. https://doi.org/10.1016/j.ijrmhm.2013.11.010

  48. Houska J, Steidl P, Vlcek J et al (2016) Thermal, mechanical and electrical properties of hard B4C, BCN, ZrBC and ZrBCN ceramics. Ceram Int 42(3):4361–4369. https://doi.org/10.1016/j.ceramint.2015.11.115

  49. Jin Y, Yasuhara S, Shimizu T et al (2015) Deposition of Boron Nitride Films by Filament-Assisted CVD Using Tris(Bimethylamino)Borane Precursor. Key Eng Mater 661:142–148. 10.4028/www.scientific.net/KEM.661.142

  50. Prakash A, Sundaram KB, Campiglia AD (2016) Photoluminescence studies on BCN thin films synthesized by RF magnetron sputtering. Mater Lett 183:355–358. https://doi.org/10.1016/j.matlet.2016.07.140

  51. Petrović M, Horn-von Hoegen M, Meyer zu Heringdorf FJ (2018) Lateral heterostructures of hexagonal boron nitride and graphene: BCN alloy formation and microstructuring mechanism. Appl Surf Sci 455(111):1086–1094. https://doi.org/10.1016/j.apsusc.2018.06.057

  52. Pogrebnjak AD, Bagdasaryan AA, Pshyk A et al (2017) Adaptive multicomponent nanocomposite coatings in surface engineering. Uspekhi Fiz Nauk 187(6):586–607. https://doi.org/10.3367/ufnr.2016.12.038018

  53. Pogrebnjak AD, Ivashchenko VI, Skrynskyy PL et al (2018) Experimental and theoretical studies of the physicochemical and mechanical properties of multi-layered TiN/SiC films: temperature effects on the nanocomposite structure. Compos Part B Eng 142:85–94. https://doi.org/10.1016/j.compositesb.2018.01.004

  54. Musil J, Sklenka J, Cerstvy R (2012) Transparent Zr-Al-O oxide coatings with enhanced resistance to cracking. Surf Coatings Technol 206(8–9):2105–2109. https://doi.org/10.1016/j.surfcoat.2011.09.035

  55. Veprek S, Veprek-Heijman MGJ, Karvankova P et al (2005) Different approaches to superhard coatings and nanocomposites. Thin Solid Films 476(1):1–29. https://doi.org/10.1016/j.tsf.2004.10.053

  56. Ivashchenko VI, Veprek S, Argon AS et al (2015) First-principles quantum molecular calculations of structural and mechanical properties of TiN/SiNx heterostructures, and the achievable hardness of the nc-TiN/SiNx nanocomposites. Thin Solid Films 578:83–92. https://doi.org/10.1016/j.tsf.2015.02.013

  57. Kasiuk J V, Fedotova JA, Koltunowicz TN et al (2014) Correlation between local Fe states and magnetoresistivity in granular films containing FeCoZr nanoparticles embedded into oxygen-free dielectric matrix. J Alloys Compd 586:S432–S435. https://doi.org/10.1016/j.jallcom.2012.09.058

  58. Pogrebnjak AD, Rogoz VM, Bondar OV et al (2016) Structure and physicomechanical properties of NbN-based protective nanocomposite coatings: a review. Prot Met Phys Chem Surfaces 52(5):802–813. https://doi.org/10.1134/s2070205116050191

  59. Pogrebnyak AD, Shpak A, Azarenkov NA et al (2009) Structures and properties of hard and superhard nanocomposite coatings. Phys Usp 52(1):29–54. https://doi.org/10.3367/ufne.0179.200901b.0035

  60. Berladir KV, Budnik OA, Dyadyura KA et al (2016) Physicochemical principles of the technology of formation of polymer composite materials based on polytetrafluoroethylene—a review. High Temp Mater Process Int Q High-Technol Plasma Process 20(2):157–184. https://doi.org/10.1615/hightempmatproc.2016017875

  61. Pogrebnjak AD, Bondar OV, Abadias G et al (2016) Structural and mechanical properties of NbN and Nb-Si-N films: experiment and molecular dynamics simulations. Ceram Int 42(10):11743–11756. https://doi.org/10.1016/j.ceramint.2016.04.095

  62. Pogrebnjak AD (2013) Structure and properties of nanostructured (Ti-Hf-Zr-V-Nb)N coatings. J Nanomater 2013:1–12. https://doi.org/10.1155/2013/780125

  63. Pogrebnjak A, Ivashchenko V, Bondar O et al (2017) Multilayered vacuum-arc nanocomposite TiN/ ZrN coatings before and after annealing: structure, properties, first-principles calculations. Mater Charact 134:55–63. https://doi.org/10.1016/j.matchar.2017.10.016

  64. Mayrhofer PH, Hovsepian PE, Mitterer C et al (2004) Calorimetric evidence for frictional self-adaptation of TiAlN/VN superlattice coatings. Surf Coatings Technol 177:341–347. https://doi.org/10.1016/j.surfcoat.2003.09.024

    Article  Google Scholar 

  65. Ou YX, Lin J, Tong S et al (2016) Structure, adhesion and corrosion behavior of CrN/TiN superlattice coatings deposited by the combined deep oscillation magnetron sputtering and pulsed dc magnetron sputtering. Surf Coatings Technol 293:21–27. https://doi.org/10.1016/j.surfcoat.2015.10.009

  66. Pogrebnyak AD, Bondar OV, Zhollybekov B et al (2017) Influence of the bilayer thickness of nanostructured multilayer MoN/CrN coating on its microstructure, hardness, and elemental composition. Phys Solid State 59(9):1798–1802. https://doi.org/10.1134/s1063783417090232

  67. Kumar DD, Kumar N, Kalaiselvam S et al (2017) Wear resistant super-hard multilayer transition metal-nitride coatings. Surfaces Interfaces 7:74–82. https://doi.org/10.1016/j.surfin.2017.03.001

    Article  Google Scholar 

  68. Chang Y-Y, Chiu W-T, Hung J-P (2016) Mechanical properties and high temperature oxidation of CrAlSiN/TiVN hard coatings synthesized by cathodic arc evaporation. Surf Coatings Technol 303:18–24. https://doi.org/10.1016/j.surfcoat.2016.02.047

    Article  CAS  Google Scholar 

  69. Yousaf MI, Pelenovich VO, Yang B et al (2015) Effect of bilayer period on structural and mechanical properties of nanocomposite TiAlN/MoN multilayer films synthesized by cathodic arc ion-plating. Surf Coatings Technol 282:94–102. https://doi.org/10.1016/j.surfcoat.2015.10.018

  70. Yu R-S, Huang R-H, Lee C-M et al (2012) Synthesis and characterization of multi-element oxynitride semiconductor film prepared by reactive sputtering deposition. Appl Surf Sci 263:58–61. https://doi.org/10.1016/j.apsusc.2012.08.109

    Article  CAS  Google Scholar 

  71. Bagdasaryan AA, Pshyk AV, Coy LE et al (2018) A new type of (TiZrNbTaHf) N/MoN nanocomposite coating: microstructure and properties depending on energy of incident ions. Compos Part B Eng 146:132–144. https://doi.org/10.1016/j.compositesb.2018.04.015

    Article  CAS  Google Scholar 

  72. Pogrebnjak AD, Isakov IF, Opekunov MS et al (1987) Increased wear resistance and positron annihilation in Cu exposed to high power ion beam. Phys Lett A 123(8):410–412. https://doi.org/10.1016/0375-9601(87)90043-0

  73. Pogrebnjak AD, Bazyl EA (2001) Modification of wear and fatigue characteristics of Ti-V-Al alloy by Cu and Ni ion implantation and high-current electron beam treatment. Vacuum 64(1):1–7. https://doi.org/10.1016/s0042-207x(01)00160-9

  74. Pogrebnjak AD, Lebed AG, Ivanov YF (2001) Modification of single crystal stainless steel structure (Fe-Cr-Ni-Mn) by high-power ion beam. Vacuum 63(4):483–486. https://doi.org/10.1016/s0042-207x(01)00225-1

  75. Demianenko A, Smyrnova K, Zhollybekov B et al (2015) Process of formation of spheroidal gold particles and of nanophases in AlN-TiB2-TiSi2 coatings after annealing with subsequent implantation. High Temp Mater Process 19(2):189–200. https://doi.org/10.1615/hightempmatproc.2016016017

  76. Bagdasaryan AA, Pshyk AV, Coy LE et al (2018) Structural and mechanical characterization of (TiZrNbHfTa) N/WN multilayered nitride coatings. Mater Lett 229:364–367. https://doi.org/10.1016/j.matlet.2018.07.048

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was done under the aegis of Ukrainian state budget program «Physical basis of forming of composition and properties of nanostructured boride, nitride and boron-nitride films of refractory metals for their usage in machine building» (No 0116U002621). Authors are grateful to Prof. O. D. Pogrebnyak and A.A. Bagdasaryan for discussing the results of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Rogoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ivashchenko, V.I., Rogoz, V.M., Koltunowicz, T.N., Kupchishin, A.I. (2019). Microstructure and Mechanical Properties of Multilayered α-AlN/α-BCN Coatings Depending on Flux Density During Target B4C Sputtering. In: Pogrebnjak, A.D., Novosad, V. (eds) Advances in Thin Films, Nanostructured Materials, and Coatings. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-6133-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6133-3_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6132-6

  • Online ISBN: 978-981-13-6133-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics