Skip to main content

A Comparative Study of Various All-Optical Logic Gates

  • Conference paper
  • First Online:
Optical and Wireless Technologies

Abstract

This article reviews the design of various optical logic gates. As we know, speed in electrical circuits is a matter of concern in high-speed communication. To avoid such limitations photonic components can be used instead of electrical components. The switching characteristic of optical communication is used to construct logical device using electro-optic effect in a Mach–Zehnder interferometer (MZI). The interferometer has shown great way to transport signal from one port to other. Hence, it is now possible to design various logical structures in digital devices using the electro-optic (EO) and interferometer as a basic constructing unit. This paper reviews various methods to design logic gate or logic operations. The design of gate has been demonstrated using finite-difference time-domain approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar S, Raghuwanshi SK, Kumar A (2013) Implementation of optical switches by using Mach–Zehnder interferometer. Opt Eng 52(9):097106

    Google Scholar 

  2. Senior JM (2009) Optical fiber communications principles and practice, 3rd edn

    Google Scholar 

  3. Kumar A, Kumar S, Raghuwanshi SK (2014) Implementation of XOR/XNOR and AND logic gates by using Mach–Zehnder interferometers. Optik 125:5764–5767

    Article  Google Scholar 

  4. Kumar S, Raghuwanshi SK, Rahman A (2015) Implementation of high speed optical universal logic gates using the electro-optic effect-based Mach–Zehnder interferometer structures. J Mod Opt 62(12):978–988. https://doi.org/10.1080/09500340.2015.1015636

    Article  Google Scholar 

  5. Kumar S, Singh G, Bisht A, Sharma S, Amphawan A (2015) Proposed new approach to the design of universal logic gates using the electro-optic effect in Mach–Zehnder interferometers. Appl Opt 54(28)

    Article  Google Scholar 

  6. Sahu PP (2015) Optical pulse controlled two mode interference coupler based logic gates. Optik 126:404–407

    Article  Google Scholar 

  7. Singh P, Tripathi DK, Jaiswal S, Dixit HK (2014) Review article all-optical logic gates: designs, classification, and comparison. Hindawi Publishing Corporation Advances in Optical Technologies (2014), vol 2014, Article id 275083

    Google Scholar 

  8. Kumar S, Kumar A, Raghuwanshi SK (2014) Implementation of an optical AND gate using Mach-Zehnder interferometers. In: Proceedings of SPIE optical modelling and design III vol 9131, 913120

    Google Scholar 

  9. Raghuwanshi SK, Kumar S, Chen N-K (2014) Implementation of sequential logic circuits using the Mach–Zehnder interferometer structure based on electro-optic effect. Opt Commun 333:193–208

    Google Scholar 

  10. Pashamehr A, Zavvari M, Banaei HA (2016) All-optical AND/OR/NOT logic gates based on photonic crystal ring resonators. Front Optoelectron 9(4):578–584

    Article  Google Scholar 

  11. Chauhan C, Bedi A, Kumar S (2017) Ultrafast optical reversible double Feynman logic gate using electro-optic effect in lithium-niobate based Mach-Zehnder interferometers. In: SPIE proceedings, vol 10105, Oxide-based materials and devices VIII; 1010520. https://doi.org/10.1117/12.2250794

  12. Parandin F, Karkhanehchi MM (2017) Terahertz all-optical NOR and AND logic gates based on 2D photonic crystals. Superlattices Microstruct 101:253–260

    Article  Google Scholar 

  13. Dimitriadou E, Zoiros KE (2012) On the design of ultrafast all-optical NOT gate using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer. Opt Laser Technol 44:600–607

    Article  Google Scholar 

  14. Kotb A, Zoiros KE (2013) Simulation of all-optical logic XNOR gate based on quantum-dot semiconductor optical amplifiers with amplified spontaneous emission. Opt Quantum Electron 45:1213–1221

    Article  Google Scholar 

  15. Dimitriadou E, Zoiros KE (2013) Proposal for ultrafast all-optical XNOR gate using single quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer. Opt Laser Technol 45:79–88

    Article  Google Scholar 

  16. Dimitriadou E, Zoiros KE (2012) On the feasibility of ultrafast all optical NAND gate using single quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer. Opt Laser Technol 44:1971–1981

    Article  Google Scholar 

  17. Godbole A, Dali PP, Janyani V, Singh G, Tanabe T (216) All optical scalable logic gates using Si3N4 microring resonators. IEEE J Sel Top Quantum Electron 22

    Google Scholar 

  18. Kumar S, Chanderkanta, Raghuwansh SK (2016) Design of optical reversible logic gates using electro-optic effect of lithium niobate based Mach–Zehnder interferometers. Appl Opt 55:21/5693

    Article  Google Scholar 

  19. Ishizaka Y, Kawaguchi Y, Saitoh K, Koshiba M (2011) Design of optical XOR, XNOR, NAND and OR logic gates based on multi-mode interference waveguides for binary—phase shift keyed signal. J Lightwave Technol 29:2836–2845

    Article  Google Scholar 

  20. Ghadi A, Mirzanejhad S (2011) All optical logic gates using semiconductor based three coupled waveguides nonlinear directional coupler. Opt Commun 284:432–435

    Article  Google Scholar 

  21. Kumar S, Raghuwanshi SK, Kumar A (2013) Implementation of optical switches by using Mach-Zehnder interferometer. Opt Eng 52:097106

    Article  Google Scholar 

  22. Kumar S, Raghuwanshi SK, Kumar A (2013) 1 × 8 signal router using cascading the Mach-Zehnder interferometers. In: Prooceeding of 6th IEEE/International Conference on Advanced Info comm Technology (IEEE/ICAIT, 2013), pp 161–162

    Google Scholar 

  23. Raghuwanshi SK, Kumar A, Kumar S (2013) 1 × 4 signal router using 3-Mach-Zehnder interferometers. Opt Eng 52:035002

    Article  Google Scholar 

  24. Kumar A, Kumar S, Raghuwanshi SK (2014) Implementation of full-adder and full-subtractor based on electro-optic effect in Mach-Zehnder interferometer. Opt Commun 324:93–107

    Article  Google Scholar 

  25. Kumar A, Raghuwanshi SK (2016) Implementation of optical gray code converter and even parity checker using the electro-optic effect in the Mach–Zehnder interferometer. Opt Quantum Electron. https://doi.org/10.1007/s11082-014-0087-9

    Article  Google Scholar 

  26. Kumar S, Singh G, Bisht A (2015) 4 × 4 signal router based on electro-optic effect of Mach-Zehnder interferometer for wavelength division multiplexing applications. Opt Commun 353:17–26

    Article  Google Scholar 

  27. Raghuwanshi SK, Kumar A, Chen NK (2014) Implementation of sequential logic circuits using the Mach–Zehnder interferometer structure based on electro-optic effect. Opt Commun 333:193–208

    Article  Google Scholar 

  28. Tang X, Fang Z, Zhai Y et al (2017) A reconfigurable optical logic gate with up to 25 logic functions based on polarization modulation with direct detection. IEEE Photon J 9(2):1943-0655

    Article  Google Scholar 

  29. Rendón-Salgado I, Gutiérrez-Castrejón R (2017) 160 GB/s all-optical AND gate using bulk SOA turbo–switched Mach Zehnder interferometer. Opt Commun 399:77–86

    Article  Google Scholar 

  30. Kotb A, Zoiros KE (2013) Simulation of all-optical logic XNOR gate based on quantum-dot semiconductor optical amplifiers with amplified spontaneous emission. Opt Quantum Electron 45:1213–1221

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Saharia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saharia, A. et al. (2020). A Comparative Study of Various All-Optical Logic Gates. In: Janyani, V., Singh, G., Tiwari, M., d’Alessandro, A. (eds) Optical and Wireless Technologies . Lecture Notes in Electrical Engineering, vol 546. Springer, Singapore. https://doi.org/10.1007/978-981-13-6159-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6159-3_45

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6158-6

  • Online ISBN: 978-981-13-6159-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics