Skip to main content

Effects of Space Microgravity on the Trans-differentiation Between Osteogenesis and Adipogenesis of Human Marrow-Derived Mesenchymal Stem Cells

  • Chapter
  • First Online:
Life Science in Space: Experiments on Board the SJ-10 Recoverable Satellite

Part of the book series: Research for Development ((REDE))

Abstract

With the development of scientific exploration in deep space, human activities will become more frequent, and activity time will be longer in the deep space. The environment alteration may cause severe bone changes of human in deep space. The changes of bone mass caused by spatial microgravity are related to the decrease of osteoblast formation and development in bone tissue, and the decrease of osteoblast formation is related to the down-regulation of differentiation of human bone marrow mesenchymal stem cells (hMSCs). Therefore, the study for the biological effects of microgravity on bone cell formation and the relative molecular mechanisms at stem cell level is one of the important subjects to explore the effects of spatial microgravity on bone changes. These studies may provide a scientific basis for the development and the related technologies of target drugs research. Based on exploring the flight conditions on the ground and simulating flight experiments with the automated space experimental device, we utilized a real microgravity environment in the SJ-10 recoverable microgravity experimental satellite (SJ-10 satellite) to examine the effects of space microgravity on transcriptome expression and differentiation potentials of hMSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALP:

Alkaline phosphatase

BMP2:

Bone morphogenetic protein-2

ECM:

Extracellular matrix

FBS:

Heat-inactivated fetal bovine serum

GADD45:

Growth arrest and DNA damage inducible alpha

GO:

Gene ontology

hBMSCs:

Human bone marrow mesenchymal stem cells

LSM:

Lymphocyte separation medium

MMP1:

Matrix metallopeptidase 1

MSCs:

Mesenchymal stem cells

NG:

Normal ground gravity

PBS:

Phosphate buffer saline

PLGA:

Synthetic poly (D, L-lactide-co-glycolide)

qRT-PCR:

Quantitative real-time PCR

RNA-SEQ:

RNA sequence

RPM:

Random positioning machine

SEM:

Scanning electronic microscope

SMG:

Simulated microgravity

α-MEM:

Α-minimum essential medium

References

  • Amann RP, Deaver DR, Zirkin BR et al (1992) Effects of microgravity or simulated launch on testicular function in rats. J Appl Physiol (Bethesda, Md.: 1985) 73(2 Suppl):174s–185s

    Google Scholar 

  • Atkov O (1992) Some medical aspects of an 8-month’s space flight. Adv Space Res Off J Comm Space Res (COSPAR) 12(1):343–345

    Article  Google Scholar 

  • Barlier-Mur AM, Chailley-Heu B, Pinteur C et al (2003) Maturational factors modulate transcription factors CCAAT/enhancer-binding proteins alpha, beta, delta, and peroxisome proliferator-activated receptor-gamma in fetal rat lung epithelial cells. Am J Respir Cell Mol Biol 29(5):620–626

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ, Karin M (1997) Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336(15):1066–1071

    Article  CAS  PubMed  Google Scholar 

  • Barreto G, Schafer A, Marhold J et al (2007) Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445(7128):671–675

    Article  CAS  PubMed  Google Scholar 

  • Basso N, Bellows CG, Heersche JN (2005) Effect of simulated weightlessness on osteoprogenitor cell number and proliferation in young and adult rats. Bone 36(1):173–183

    Article  CAS  PubMed  Google Scholar 

  • Bucaro MA, Fertala J, Adams CS et al (2004) Bone cell survival in microgravity: evidence that modeled microgravity increases osteoblast sensitivity to apoptogens. Ann N Y Acad Sci 1027:64–73

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet G, Nys G, Bouillon R (1997) Microgravity reduces the differentiation of human osteoblastic MG-63 cells. J Bone Miner Res Off J Am Soc Bone Miner Res 12(5):786–794

    Article  CAS  Google Scholar 

  • Cedar SH (2006) The function of stem cells and their future roles in healthcare. Br J Nurs (Mark Allen Publishing) 15(2):104–107

    Article  CAS  Google Scholar 

  • Chang TT, Spurlock SM, Candelario TL et al (2015) Spaceflight impairs antigen-specific tolerance induction in vivo and increases inflammatory cytokines. FASEB J Off Publ Fed Am Soc Exp Biol 29(10):4122–4132

    CAS  Google Scholar 

  • Chen XJ, Lin F, Qiao C (2004) Isolation, culture and osteogenic potential of human adipose stromal cells and [J]. J Pract Stomatol 20:12–15

    Google Scholar 

  • Chen H, Lv K, Dai Z et al (2016) Intramuscular injection of mechano growth factor E domain peptide regulated expression of memory-related sod, miR-134 and miR-125b-3p in rat hippocampus under simulated weightlessness. Biotech Lett 38(12):2071–2080

    Article  CAS  Google Scholar 

  • Claassen DE, Spooner BS (1994) Impact of altered gravity on aspects of cell biology. Int Rev Cytol 156:301–373

    Article  CAS  PubMed  Google Scholar 

  • Claassen DE, van Twest JS, Spooner BS (1994) Formation and vesiculation of biomembranes during spaceflight. Adv Space Res Off J Comm Space Res (COSPAR) 14(8):111–114

    Article  CAS  Google Scholar 

  • Concannon CG, Tuffy LP, Weisova P et al (2010) AMP kinase-mediated activation of the BH3-only protein Bim couples energy depletion to stress-induced apoptosis. J Cell Biol 189(1):83–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crucian BE, Zwart SR, Mehta S et al (2014) Plasma cytokine concentrations indicate that in vivo hormonal regulation of immunity is altered during long-duration spaceflight. J Interf Cytokine Res Off J Int Soc Interf Cytokine Res 34(10):778–786

    Article  CAS  Google Scholar 

  • Cubano LA, Lewis ML (2001) Effect of vibrational stress and spaceflight on regulation of heat shock proteins hsp70 and hsp27 in human lymphocytes (Jurkat). J Leukoc Biol 69(5):755–761

    CAS  PubMed  Google Scholar 

  • Cui Y, Zhou J, Li C et al (2010) Effects of simulated weightlessness on liver Hsp70 and Hsp70mRNA expression in rats. Int J Clin Exp Med 3(1):48–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai ZQ, Wang R, Ling SK et al (2007) Simulated microgravity inhibits the proliferation and osteogenesis of rat bone marrow mesenchymal stem cells. Cell Prolif 40(5):671–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai Z, Wu F, Chen J et al (2013) Actin microfilament mediates osteoblast Cbfa1 responsiveness to BMP2 under simulated microgravity. PLoS ONE 8(5):e63661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai Z, Guo F, Wu F et al (2014) Integrin alphavbeta3 mediates the synergetic regulation of core-binding factor alpha1 transcriptional activity by gravity and insulin-like growth factor-1 through phosphoinositide 3-kinase signaling. Bone 69:126–132

    Article  CAS  PubMed  Google Scholar 

  • Didier C, Broday L, Bhoumik A et al (2003) RNF5, a RING finger protein that regulates cell motility by targeting paxillin ubiquitination and altered localization. Mol Cell Biol 23(15):5331–5345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer SF, Bouillet P, O’Donnell K et al (2007) Proapoptotic BH3-only protein Bim is essential for developmentally programmed death of germinal center-derived memory B cells and antibody-forming cells. Blood 110(12):3978–3984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forrest AR, McCormack AK, DeSouza CP et al (1999) Multiple splicing variants of cdc25B regulate G2/M progression. Biochem Biophys Res Commun 260(2):510–515

    Article  CAS  PubMed  Google Scholar 

  • Fritsch-Yelle JM, Charles JB, Jones MM et al (1996) Microgravity decreases heart rate and arterial pressure in humans. J Appl Physiol (Bethesda, Md.: 1985) 80(3):910–914

    Google Scholar 

  • Fu Y, Wang T, Liang WW (2006) Isolation, culture and differentiation of rat bone marrow-derived mesenchymal stem cells into neuron-like cells. Lingnan J Emerg Med 11:1–3

    Google Scholar 

  • Gambara G, Salanova M, Ciciliot S et al (2017) Gene expression profiling in slow-type calf soleus muscle of 30 days space-flown mice. PLoS ONE 12(1):e0169314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gershovich PM, Gershovich IuG, Buravkova LB (2013) The effects of simulated microgravity on the pattern of gene expression in human bone marrow mesenchymal stem cells under osteogenic differentiation. Fiziol Cheloveka 39(5):105–111

    CAS  PubMed  Google Scholar 

  • Girardi C, De Pitta C, Casara S et al (2012) Analysis of miRNA and mRNA expression profiles highlights alterations in ionizing radiation response of human lymphocytes under modeled microgravity. PLoS ONE 7(2):e31293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gressot LV, Doucette T, Yang Y et al (2017) Analysis of the inhibitors of apoptosis identifies BIRC3 as a facilitator of malignant progression in glioma. Oncotarget 8(8):12695–12704

    Article  PubMed  Google Scholar 

  • Gritsyna YV, Abdusalamova ZR, Vikhlyantsev IM et al (2015) Changes in gene expression and content of Hsp70 and Hsp90 in striated muscles of mice after 30-day space flight on the biosatellite Bion-M1. Dokl Biochem Biophys 463:199–202

    Article  CAS  PubMed  Google Scholar 

  • Gurkin LW (1992) The NASA sounding rocket program and space sciences. ASGSB Bull Publ Am Soc Gravit Space Biol 6(1):113–120

    CAS  Google Scholar 

  • Heer M, Kamps N, Biener C et al (1999) Calcium metabolism in microgravity. Eur J Med Res 4(9):357–360

    CAS  PubMed  Google Scholar 

  • Hill PA (1998) Bone remodelling. Br J Orthod 25(2):101–107

    CAS  PubMed  Google Scholar 

  • Hoshikawa H, Indo K, Mori T, Mori N (2011) Enhancement of the radiation effects by D-allose in head and neck cancer cells. Cancer Lett 306(1):60–66

    Article  CAS  PubMed  Google Scholar 

  • Hoshino T, Nakaya T, Araki W et al (2007) Endoplasmic reticulum chaperones inhibit the production of amyloid-beta peptides. Biochem J 402(3):581–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoson T, Kamisaka S, Masuda Y et al (1997) Evaluation of the three-dimensional clinostat as a simulator of weightlessness. Planta 203(Suppl):S187–197

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Dai ZQ, Ling SK et al (2009) Gravity, a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells. J Biomed Sci 16:87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang R, Langdon SP, Tse M et al (2016) The role of HDAC2 in chromatin remodelling and response to chemotherapy in ovarian cancer. Oncotarget 7(4):4695–4711

    Article  PubMed  Google Scholar 

  • Hughes-Fulford M, Tjandrawinata R, Fitzgerald J et al (1998) Effects of microgravity on osteoblast growth. Gravit Space Biol Bull Publ Am Soc Gravit Space Biol 11(2):51–60

    CAS  Google Scholar 

  • In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C et al (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells (Dayton, Ohio) 22(7):1338–1345

    Google Scholar 

  • Ishihara A, Fujino H, Nagatomo F et al (2008) Gene expression levels of heat shock proteins in the soleus and plantaris muscles of rats after hindlimb suspension or spaceflight. J Physiol Sci JPS 58(6):413–417

    Article  CAS  PubMed  Google Scholar 

  • Jung HJ, Kim EH, Mun JY et al (2007) Base excision DNA repair defect in Gadd45a-deficient cells. Oncogene 26(54):7517–7525

    Article  CAS  PubMed  Google Scholar 

  • Kanninen K et al (2011) Targeting glycogen synthase kinase-3 for therapeutic benefit against oxidative stress in Alzheimer’S disease: involvement of the Nrf2-ARE pathway. Intem J Alzheimer’s Dis 15:56–64

    Google Scholar 

  • Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5(10):749–759

    Article  CAS  PubMed  Google Scholar 

  • Katembe WJ, Edelmann RE, Brinckmann E et al (1998a) Development of spaceflight experiments with Arabidopsis as a model system in gravitropism studies. J Plant Res 111:463–470

    Article  CAS  PubMed  Google Scholar 

  • Katembe WJ, Edelmann RE, Brinckmann E, Kiss JZ (1998b) The development of spaceflight experiments with Arabidopsis as a model system in gravitropism studies. J Plant Res 111(1103):463–470

    Article  CAS  PubMed  Google Scholar 

  • Kizilay Mancini O, Lora M, Shum-Tim D et al (2017) A proinflammatory secretome mediates the impaired immunopotency of human mesenchymal stromal cells in elderly patients with atherosclerosis. Stem Cells Transl Med 6(4):1132–1140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klaus DM (2001) Clinostats and bioreactors. Gravit Space Biol Bull: Publ Am Soc Gravit Space Biol 14(2):55–64

    CAS  Google Scholar 

  • Krikorian AD, Levine HG, Kann RP et al (1992) Effects of spaceflight on growth and cell division in higher plants. Adv Space Biol Med 2:181–209

    Article  CAS  PubMed  Google Scholar 

  • Lang TF, Leblanc AD, Evans HJ et al (2006) Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight. J Bone Miner Res Off J Am Soc Bone Miner Res 21(8):1224–1230

    Article  Google Scholar 

  • Lazarenko OP, Rzonca SO, Suva LJ et al (2006) Netoglitazone is a PPAR-gamma ligand with selective effects on bone and fat. Bone 38(1):74–84

    Article  CAS  PubMed  Google Scholar 

  • Leach CS (1992) Biochemical and hematologic changes after short-term space flight. Microgravity Q MGQ 2(2):69–75

    CAS  PubMed  Google Scholar 

  • Lee OK, Kuo TK, Chen WM et al (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103(5):1669–1675

    Article  CAS  PubMed  Google Scholar 

  • Leiros GJ, Kusinsky AG, Balana ME et al (2017) Triolein reduces MMP-1 upregulation in dermal fibroblasts generated by ROS production in UVB-irradiated keratinocytes. J Dermatol Sci 85(2):124–130

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Miao LY, Xiao YL et al (2015) Hypoxia induced high expression of thioredoxin interacting protein (TXNIP) in non-small cell lung cancer and its prognostic effect. Asian Pac J Cancer Prev APJCP 16(7):2953–2958

    Article  PubMed  Google Scholar 

  • Lincoln AJ, Wickramasinghe D, Stein P et al (2002) Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation. Nat Genet 30(4):446–449

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Suyeoka G, Papa S, Franzoso G et al (2009) Growth arrest and DNA damage protein 45b (Gadd45b) protects retinal ganglion cells from injuries. Neurobiol Dis 33(1):104–110

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Abad M, Iglesias-Platas I, Monk D (2016) Epigenetic characterization of CDKN1C in placenta samples from non-syndromic intrauterine growth restriction. Front Genet 7:62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu T, Zhang Y, Wong M et al (2017a) Detection of DNA damage by space radiation in human fibroblasts flown on the International Space Station. Life Sci Space Res 12:24–31

    Article  Google Scholar 

  • Lu Y, Kwintkiewicz J, Liu Y et al (2017b) Chemosensitivity of IDH1-mutated gliomas due to an impairment in PARP1-mediated DNA repair. Can Res 77(7):1709–1718

    Article  CAS  Google Scholar 

  • Mahajan L, Pandit H, Madan T et al (2013) Human surfactant protein D alters oxidative stress and HMGA1 expression to induce p53 apoptotic pathway in eosinophil leukemic cell line. PLoS ONE 8(12):e85046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mao XW, Pecaut MJ, Stodieck LS et al (2014) Biological and metabolic response in STS-135 space-flown mouse skin. Free Radical Res 48(8):890–897

    Article  CAS  Google Scholar 

  • Marie PJ, Kaabeche K (2006) PPAR gamma activity and control of bone mass in skeletal unloading. PPAR Res 2006:64807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta SK, Stowe RP, Feiveson AH et al (2000) Reactivation and shedding of cytomegalovirus in astronauts during spaceflight. J Infect Dis 182(6):1761–1764

    Article  CAS  PubMed  Google Scholar 

  • Mesland DA, Anton AH, Willemsen H et al (1996) The Free Fall Machine—a ground-based facility for microgravity research in life sciences. Microgravity Sci Technol 9(1):10–14

    CAS  PubMed  Google Scholar 

  • Munch-Petersen B (2010) Enzymatic regulation of cytosolic thymidine kinase 1 and mitochondrial thymidine kinase 2: a mini review. Nucleosides Nucleotides Nucleic Acids 29(4–6):363–369

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H, Kumei Y, Morita S et al (2003) Suppression of osteoblastic phenotypes and modulation of pro- and anti-apoptotic features in normal human osteoblastic cells under a vector-averaged gravity condition. J Med Dent Sci 50(2):167–176

    PubMed  Google Scholar 

  • Nasef A, Ashammakhi N, Fouillard L (2008) Immunomodulatory effect of mesenchymal stromal cells: possible mechanisms. Regen Med 3(4):531–546

    Article  CAS  PubMed  Google Scholar 

  • Nilsson I, Hoffmann I (2000) Cell cycle regulation by the Cdc25 phosphatase family. Prog Cell Cycle Res 4:107–114

    Article  CAS  PubMed  Google Scholar 

  • Novoselova EG, Lunin SM, Khrenov MO et al (2015) Changes in immune cell signalling, apoptosis and stress response functions in mice returned from the BION-M1 mission in space. Immunobiology 220(4):500–509

    Article  CAS  PubMed  Google Scholar 

  • O’Donoghue K, Choolani M, Chan J et al (2003) Identification of fetal mesenchymal stem cells in maternal blood: implications for non-invasive prenatal diagnosis. Mol Hum Reprod 9(8):497–502

    Article  PubMed  Google Scholar 

  • Ontiveros C, McCabe LR (2003) Simulated microgravity suppresses osteoblast phenotype, Runx2 levels and AP-1 transactivation. J Cell Biochem 88(3):427–437

    Article  CAS  PubMed  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S et al (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 98(18):10344–10349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oscarsson N, Ny L, Molne J et al (2017) Hyperbaric oxygen treatment reverses radiation induced pro-fibrotic and oxidative stress responses in a rat model. Free Radic Biol Med 103:248–255

    Article  CAS  PubMed  Google Scholar 

  • Owen TA, Aronow M, Shalhoub V et al (1990) Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 143(3):420–430

    Article  CAS  PubMed  Google Scholar 

  • Pan Z, Yang J, Guo C et al (2008) Effects of hindlimb unloading on ex vivo growth and osteogenic/adipogenic potentials of bone marrow-derived mesenchymal stem cells in rats. Stem Cells Dev 17(4):795–804

    Article  CAS  PubMed  Google Scholar 

  • Pantano C, Reynaert NL, van der Vliet A et al (2006) Redox-sensitive kinases of the nuclear factor-kappaB signaling pathway. Antioxid Redox Signal 8(9–10):1791–1806

    Article  CAS  PubMed  Google Scholar 

  • Pereira RF, Halford KW, O’Hara MD et al (1995) Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci USA 92(11):4857–4861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pi J, Zhang Q, Fu J et al (2010) ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function. Toxicol Appl Pharmacol 244(1):77–83

    Article  CAS  PubMed  Google Scholar 

  • Platt ID, El-Sohemy A (2009) Regulation of osteoblast and adipocyte differentiation from human mesenchymal stem cells by conjugated linoleic acid. J Nutr Biochem 20(12):956–964

    Article  CAS  PubMed  Google Scholar 

  • Qiu X, Brown K, Hirschey MD et al (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12(6):662–667

    Article  CAS  PubMed  Google Scholar 

  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49(11):1603–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriges Blanko E, Kadyrova LY et al (2016) DNA mismatch repair interacts with CAF-1- and ASF1A-H3-H4-dependent Histone (H3-H4)2 tetramer deposition. J Biol Chem 291(17):9203–9217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rucci N, Rufo A, Alamanou M et al (2007) Modeled microgravity stimulates osteoclastogenesis and bone resorption by increasing osteoblast RANKL/OPG ratio. J Cell Biochem 100(2):464–473

    Article  CAS  PubMed  Google Scholar 

  • Saxena R, Pan G, Dohm ED, McDonald JM (2011) Modeled microgravity and hindlimb unloading sensitize osteoclast precursors to RANKL-mediated osteoclastogenesis. J Bone Miner Metab 29(1):111–122

    Article  CAS  PubMed  Google Scholar 

  • Schneider V, Oganov V, LeBlanc A et al (1995) Bone and body mass changes during space flight. Acta Astronaut 36(8–12):463–466

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ (1996) Cancer cell cycles. Science (New York, N.Y.) 274(5293):1672–1677

    Google Scholar 

  • Shi D, Meng R, Deng W et al (2010) Effects of microgravity modeled by large gradient high magnetic field on the osteogenic initiation of human mesenchymal stem cells. Stem Cell Rev 6(4):567–578

    Article  Google Scholar 

  • Smith ML, Ford JM, Hollander MC et al (2000) p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol Cell Biol 20(10):3705–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotiropoulou PA, Papamichail M (2007) Immune properties of mesenchymal stem cells. Methods Mol Biol 407:225–243

    Google Scholar 

  • Strewe C, Crucian BE, Sams CF et al (2015) Hyperbaric hyperoxia alters innate immune functional properties during NASA Extreme Environment Mission Operation (NEEMO). Brain Behav Immun 50:52–57

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Cao X, Hu Z et al (2015a) MiR-103 inhibits osteoblast proliferation mainly through suppressing Cav1.2 expression in simulated microgravity. Bone 76:121–128

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Cao X, Zhang Z et al (2015b) Simulated microgravity inhibits L-type calcium channel currents partially by the up-regulation of miR-103 in MC3T3-E1 osteoblasts. Sci Rep 5:8077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sykiotis GP, Habeos IG, Samuelson AV et al (2011) The role of the antioxidant and longevity-promoting Nrf2 pathway in metabolic regulation. Curr Opin Clin Nutr Metab Care 14(1):41–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamma R, Colaianni G, Camerino C et al (2009) Microgravity during spaceflight directly affects in vitro osteoclastogenesis and bone resorption. FASEB J Off Publ Fed Am Soc Exp Biol 23(8):2549–2554

    CAS  Google Scholar 

  • Tilton FE, Degioanni JJ, Schneider VS (1980) Long-term follow-up of Skylab bone demineralization. Aviat Space Environ Med 51(11):1209–1213

    CAS  PubMed  Google Scholar 

  • Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79(7):1147–1156

    Article  CAS  PubMed  Google Scholar 

  • Tuan RS, Boland G, Tuli R (2003) Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 5(1):32–45

    Article  CAS  PubMed  Google Scholar 

  • Versari S, Longinotti G, Barenghi L et al (2013) The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment. FASEB J Off Publ Fed Am Soc Exp Biol 27(11):4466–4475

    CAS  Google Scholar 

  • Wang T (2008) 2007 annual meeting of American Heart Association and the latest results of cardiac resuscitation. Chin Emerg Med 28:112–113

    CAS  Google Scholar 

  • Wang T, Fu Y, Fang XS (2007) Differentiation and identification of bone marrow mesenchymal stem cells into cardiomyocytes in vitro. J Sun Yat-Sen Univ 28:S9–11

    Google Scholar 

  • Wang X, Guo B, Li Q et al (2013) miR-214 targets ATF4 to inhibit bone formation. Nat Med 19(1):93–100

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Sun Q, Xu W et al (2015) Modulation of modeled microgravity on radiation-induced bystander effects in Arabidopsis thaliana. Mutat Res 773:27–36

    Article  CAS  PubMed  Google Scholar 

  • Warejcka DJ, Harvey R, Taylor BJ et al (1996) A population of cells isolated from rat heart capable of differentiating into several mesodermal phenotypes. J Surg Res 62(2):233–242

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Song L, Huang C (2009) Gadd45 proteins as critical signal transducers linking NF-kappaB to MAPK cascades. Curr Cancer Drug Targets 9(8):915–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu FX, Chai TF, He H, Hagen T, Luo Y (2010) Thioredoxin-interacting protein (Txnip) gene expression: sensing oxidative phosphorylation status and glycolytic rate. J Biol Chem 285(33):25822–25830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zayzafoon M, Gathings WE, McDonald JM (2004) Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis. Endocrinology 145(5):2421–2432

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Lu T, Wong M et al (2016) Transient gene and microRNA expression profile changes of confluent human fibroblast cells in spaceflight. FASEB J Off Publ Fed Am Soc Exp Biol 30(6):2211–2224

    CAS  Google Scholar 

  • Zhang Z, Lang J, Cao Z et al (2017) Radiation-induced SOD2 overexpression sensitizes colorectal cancer to radiation while protecting normal tissue. Oncotarget 8(5):7791–7800

    Article  PubMed  Google Scholar 

  • Zhang C, Li L, Jiang Y et al (2018) Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis. FASEB J Off Publ Fed Am Soc Exp Biol 32(8):4444–4458

    CAS  Google Scholar 

  • Zong C, Xue D, Yuan W et al (2010) Reconstruction of rat calvarial defects with human mesenchymal stem cells and osteoblast-like cells in poly-lactic-co-glycolic acid scaffolds. Eur Cells Mater 20:109–120

    Article  CAS  Google Scholar 

  • Zuo B, Zhu J, Li J et al (2015) microRNA-103a functions as a mechanosensitive microRNA to inhibit bone formation through targeting Runx2. J Bone Miner Res Off J Am Soc Bone Miner Res 30(2):330–345

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We much thank the opportunity of space experiment supplied by SJ-10 Recoverable Scientific Satellite. This study was supported by the grants from Strategically Guiding Scientific Special Project from Chinese Academy of Sciences (XDA04020202-23), Chinese National Nature Science Foundation (U1738102, 81570932).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, C., Li, L., Wang, J. (2019). Effects of Space Microgravity on the Trans-differentiation Between Osteogenesis and Adipogenesis of Human Marrow-Derived Mesenchymal Stem Cells. In: Duan, E., Long, M. (eds) Life Science in Space: Experiments on Board the SJ-10 Recoverable Satellite. Research for Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6325-2_12

Download citation

Publish with us

Policies and ethics