Skip to main content

Pool Boiling Using Nanofluids: A Review

  • Conference paper
  • First Online:
Advances in Fluid and Thermal Engineering

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Nanofluids have found their applications in various fields of heat transfer and their demand in various industries in ever growing. Pool boiling of nanofluids has always been a topic of great interest and research. In past years, a lot of experimental works have been done on various nanofluids and base fluid solutions to study about the influence of nanofluids on critical heat flux and heat transfer coefficient. Through these works, various factors such as surface roughness, wettability, contact angle, and particle deposition have also been studied as how these factors influence CHF. This paper also focuses on the past work and studies done on nanofluid pool boiling comprising of the very existing data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vassallo P, Kumar R, D’Amico S (2004) Int J Heat Mass Transf 47(2):407. https://doi.org/10.1016/s0017-9310(03)00361-2

    Article  Google Scholar 

  2. Taylor RA, Phelan PE (2009) Int J Heat Mass Transf 52(23–24):5339. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.040

    Article  Google Scholar 

  3. Kim H (2011) Nanoscale Res Lett 6(1):415. https://doi.org/10.1186/1556-276x-6-415

    Article  Google Scholar 

  4. Bang IC, Chang SH (2005) Int J Heat Mass Transf 48(12):2407. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.047

    Article  Google Scholar 

  5. Shahmoradi Z, Etesami N, Esfahany MN (2013) Int Commun Heat Mass Transf 47:113. https://doi.org/10.1016/j.icheatmasstransfer.2013.06.006

    Article  Google Scholar 

  6. Fang X, Wang R, Chen W, Zhang H, Ma C (2015) Appl Therm Eng 91:1003. https://doi.org/10.1016/j.applthermaleng.2015.08.100

    Article  Google Scholar 

  7. Wen D, Ding Y (2005) J Nanopart Res 7(2–3):265. https://doi.org/10.1007/s11051-005-3478-9

    Article  Google Scholar 

  8. Sapre G, Kumarappa S (2017) Int J Innovative Res Sci Eng Technol 6(3):3489

    Google Scholar 

  9. Kim S, Bang I, Buongiorno J, Hu L (2007) Int J Heat Mass Transf 50(19–20):4105. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.002

    Article  Google Scholar 

  10. Sekhar TVR, Nandan G, Prakash R, Muthuraman M (2018) Mater Today Proc 5(2):4563. https://doi.org/10.1016/j.matpr.2017.12.026

    Article  Google Scholar 

  11. Sekhar TVR, Nandan G, Prakash R, Muthuraman M (2018) Mater Today Proc 5(2):6176. https://doi.org/10.1016/j.matpr.2017.12.224

    Article  Google Scholar 

  12. Vadhera J, Sura A, Nandan G, Dwivedi G (2018) Mater Today Proc 5(2):3411. https://doi.org/10.1016/j.matpr.2017.11.586

    Article  Google Scholar 

  13. Sekhar TVR, Prakash R, Nandan G, Muthuraman M (2017) Prog Ind Ecol Int J 11(3):227. https://doi.org/10.1504/pie.2017.091296

    Article  Google Scholar 

  14. Sekhar TVR, Prakash R, Nandan G, Muthuraman M (2018) Micro Nano Lett 13(2):248. https://doi.org/10.1049/mnl.2017.0410

    Article  Google Scholar 

  15. Sekhar TVR, Prakash R, Nandan G, Muthuraman M (2018) Pressure drop characteristics & efficiency enhancement by using TiO2-H2O nanofluid in a sustainable solar thermal energy collector. Int J Environ Sustain Dev 17(2/3):273. https://doi.org/10.1504/IJESD.2018.094039

  16. Lalpurwala G, Jani DB (2017) Int J Res Mech Eng 2(2):25

    Google Scholar 

  17. Coursey JS, Kim J (2008) Int J Heat Fluid Flow 29(6):1577. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.004

    Article  Google Scholar 

  18. Soltani S, Etemad SG, Thibault J (2010) Int Commun Heat Mass Transf 37(1):29. https://doi.org/10.1016/j.icheatmasstransfer.2009.08.005

    Article  Google Scholar 

  19. Truong BH (2007) Determination of pool boiling critical heat flux enhancement in nanofluids, undergraduate thesis. Master’s thesis, MIT

    Google Scholar 

  20. You SM, Kim JH, Kim KH (2003) Appl Phys Lett 83(16):3374. https://doi.org/10.1063/1.1619206

    Article  Google Scholar 

  21. Sunil LJ, Kumarappa S, Hegde RK (2016) Int Res J Eng Technol 3(1):674

    Google Scholar 

  22. Fang X, Chen Y, Zhang H, Chen W, Dong A, Wang R (2016) Renew Sustain Energy Rev 62:924. https://doi.org/10.1016/j.rser.2016.05.047

    Article  Google Scholar 

  23. Kim SJ, Bang IC, Buongiorno J, Hu LW (2007) Bull Pol Acad Sci Tech Sci 55(2):211

    Google Scholar 

  24. Vazquez DM, Kumar R (2013) Int Commun Heat Mass Transf 41:1. https://doi.org/10.1016/j.icheatmasstransfer.2012.11.008

    Article  Google Scholar 

  25. Liu Z, Liao L (2008) Int J Heat Mass Transf 51(9–10):2593. https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.050

  26. Wang XQ, Mujumdar AS (2007) Int J Therm Sci 46(1):1. https://doi.org/10.1016/j.ijthermalsci.2006.06.010

    Article  Google Scholar 

  27. Ciloglu D, Bolukbasi A (2015) Appl Therm Eng 84:45. https://doi.org/10.1016/j.applthermaleng.2015.03.063

    Article  Google Scholar 

  28. Kumar R, Vazquez DM (2010) In: International conference in heat transfer and fluid mechanics and thermodynamics (2010)

    Google Scholar 

  29. Ahn HS, Kim MH (2012) J Heat Transf 134(2):024001. https://doi.org/10.1115/1.4005065

    Article  Google Scholar 

  30. Abdollahi A, Salimpour MR, Etesami N (2017) Appl Therm Eng 111:1101. https://doi.org/10.1016/j.applthermaleng.2016.10.019

    Article  Google Scholar 

  31. Lee JH, Lee T, Jeong YH (2012) Int J Heat Mass Transf 55(9–10):2656. https://doi.org/10.1016/j.ijheatmasstransfer.2011.12.027

    Article  Google Scholar 

  32. Sheikhbahai M, Esfahany MN, Etesami N (2012) Int J Therm Sci 62:149. https://doi.org/10.1016/j.ijthermalsci.2011.10.004

    Article  Google Scholar 

  33. Yu W, Xie H, Chen L, Li Y (2010) Colloids Surf A 355(1–3):109. https://doi.org/10.1016/j.colsurfa.2009.11.044

    Article  Google Scholar 

  34. Lee JH, Lee T, Jeong YH (2013) Int J Heat Mass Transf 61:432. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.018

    Article  Google Scholar 

  35. Ham J, Kim H, Shin Y, Cho H (2017) Int J Therm Sci 114:86. https://doi.org/10.1016/j.ijthermalsci.2016.12.009

    Article  Google Scholar 

  36. Liu Z, Xiong J, Bao R (2007) Int J Multiph Flow 33(12):1284. https://doi.org/10.1016/j.ijmultiphaseflow.2007.06.009

  37. Wang XQ, Mujumdar AS (2008) Braz J Chem Eng 25(44):631

    Article  Google Scholar 

  38. Chopkar M, Das AK, Manna I, Das PK (2007) Heat Mass Transf 44(8):999. https://doi.org/10.1007/s00231-007-0345-5

    Article  Google Scholar 

  39. Trisaksri V, Wongwises S (2009) Int J Heat Mass Transf 52(5–6):1582. https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.041

    Article  Google Scholar 

  40. Wang XQ, Mujumdar AS (2008) Braz J Chem Eng 25(4):613

    Article  Google Scholar 

  41. Peng H, Ding G, Hu H, Jiang W, Zhuang D, Wang K (2010) Int J Refrig 33(2):347. https://doi.org/10.1016/j.ijrefrig.2009.11.007

    Article  Google Scholar 

  42. Kwark SM, Kumar R, Moreno G, Yoo J, You SM (2010) Int J Heat Mass Transf 53(5–6):972. https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.018

    Article  Google Scholar 

  43. Hiswankar SC, Kshirsagar JM (2016) Int J Eng Res Technol 2(7):2091

    Google Scholar 

  44. Kumar M, Bhutani V, Khatak P (2015) J Mech Eng Sci 9:1538. https://doi.org/10.15282/jmes.9.2015.2.0150

    Article  Google Scholar 

  45. Kole M, Dey T (2012) Int J Therm Sci 62:61. https://doi.org/10.1016/j.ijthermalsci.2012.02.002

    Article  Google Scholar 

  46. Salari E, Peyghambarzadeh SM, Sarafraz MM, Hormozi F (2015) Periodica Polytech Chem Eng. https://doi.org/10.3311/ppch.8262

  47. Naphon P, Thongjing C (2014) Int Commun Heat Mass Transf 52:84. https://doi.org/10.1016/j.icheatmasstransfer.2014.01.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopal Nandan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krishn, S., Goyal, M., Nandan, G., Kumar, S., Kumar, P., Shukla, A.K. (2019). Pool Boiling Using Nanofluids: A Review. In: Saha, P., Subbarao, P., Sikarwar, B. (eds) Advances in Fluid and Thermal Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-6416-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6416-7_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6415-0

  • Online ISBN: 978-981-13-6416-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics