Skip to main content

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 12))

Abstract

Drought is the most destructive abiotic stress affecting the world’s food security. Rhizospheric and endophytic bacteria produce range of enzymes and metabolites, which help the plants to tolerate abiotic stress. Induced systemic resistance gets developed in plants surviving in drought conditions. Drought tolerance is induced in crops due to the production of exopolysaccharides, phytohormones like gibberellic acid, cytokinins, abscisic acid, and IAA, ACC deaminase, antioxidants, osmolytes, and volatile compounds. Plants in drought conditions survive due to rhizobacteria enhancing photosynthetic activity. PGPR improves the growth, antioxidant activity, and photosynthetic activity of the crops in drought conditions. Rhizobacteria assist in resource attainment, i.e., nitrogen, phosphorus, and essential minerals by changing the root morphology, improving the soil structure, and bioremediation of the polluted soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Arkhipova T, Prinsen E, Veselov S, Martinenko E, Melentiev A, Kudoyarova G (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315

    Article  CAS  Google Scholar 

  • Aroca R, Ferrante A, Vernieri P, Chrispeels M (2006) Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulgaris plants. Ann Bot 98:1301–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arshad M, Sharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC deaminase partially eliminate the effects of drought stress on growth, yield, and ripening of pea (P. sativum L.). Pedosphere 18:611–620

    Article  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential – are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168

    Article  Google Scholar 

  • Bottner P, Couteaux M, Vallejo R (1995) Soil organic matter in Mediterranean-type ecosystems and global climatic changes: a case study-the soils of the Mediterranean basin. In: Jose M, Oechel C (eds) Global change and Mediterranean-type ecosystems ecological studies. Springer, New York, pp 306–325

    Chapter  Google Scholar 

  • Bresson J, Vasseur F, Dauzat M, Labadie M, Varoquax F, Touraine B, Vile D (2014) Interact to survive: Phyllobacterium brassicacearum improves Arabidopsis tolerance to severe water deficit and growth recovery. PLoS One 9:e107607

    Article  PubMed  PubMed Central  Google Scholar 

  • Casanovas M, Barassi A, Sueldo J (2002) Azospirillum inoculation mitigate water stress effects in maize seedlings. Cereal Res Commun 30:343–350

    Google Scholar 

  • Cohen A, Bottini R, Pontin M, Berli F, Moreno D, Boccanlandro H, Travaglia C, Picocoli P (2015) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant 153:79–90

    Article  CAS  Google Scholar 

  • Creus M, Graziano M, Casanovas M, Pereyra A, Simontacchi M, Puntarulo S, Barassi A, Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense induced lateral root formation in tomato. Planta 221:297–303

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root-colonizing bacteria stimulating wheat growth in saline soils. Biol Fertil Soil 45:561–573

    Article  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra A (2009) Plant drought stress: effects, mechanisms, and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • German A, Burdman S, Okon Y, Kigel J (2000) Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biol Fertil Soil 32:259–264

    Article  Google Scholar 

  • Glick B (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Gowda P, Henry A, Yamauchi A, Shashidhar E, Serraj R (2011) Root biology and genetic improvement for drought avoidance in rice. Field Crops Res 122:1–13

    Article  Google Scholar 

  • Grover M, Madhubala R, Ali Z, Yadav K, Venkateswarlu B (2014) Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions. J Basic Microbiol 54:951–961

    Article  CAS  Google Scholar 

  • Guo Z, Ou W, Lu S, Zhong Q (2006) Differential responses of the antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiol Biochem 44:828–836

    Article  CAS  PubMed  Google Scholar 

  • Gururani A, Upadhyaya P, Baskar V, Venkatesh J, Nookaraju A, Park W (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-Scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32:245–258

    Article  CAS  Google Scholar 

  • Hardoim R, Van Overbeek S, Van Elsas D (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Helena M, Carvalho C (2008) Drought stress and reactive oxygen species production, scavenging and signaling. Plant Signal Behav 3:156–165

    Article  Google Scholar 

  • Hepper M (1975) Extracellular polysaccharides of soil bacteria. In: Walker N (ed) Soil microbiology, a critical review. Wiley, New York, pp 93–111

    Google Scholar 

  • Hsiao A (2000) Effect of water deficit on morphological and physiological characterizes in rice (Oryza sativa). J Agric For 3:93–97

    Google Scholar 

  • Huang B, DaCosta M, Jiang Y (2014) Research advances in mechanisms of turfgrass tolerance to abiotic stresses: from physiology to molecular biology. Crit Rev Plant Sci 33:141–189

    Article  CAS  Google Scholar 

  • Jaleel A, Manivannan P, Wahid A, Farooq M, Al-Juburi J, Somasundaram R, Vam P (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Kamara Y, Menkir A, Badu-Apraku B, Ibikunle O (2003) The influence of drought stress on growth, yield and yield components of selected maize genotypes. J Agric Sci 141:43–50

    Article  Google Scholar 

  • Kasim A, Osman E, Omar N, Abd El-Daim A, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant growth promoting bacteria. J Plant Growth Regul 32:122–130

    Article  CAS  Google Scholar 

  • Kiani P, Talia P, Maury P, Grieu P, Heinz R, Perrault A, Nishinakamasu V, Hopp E, Gentzbittel L, Paniego N, Sarrafi A (2007) Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments. Plant Sci 172:773–787

    Article  CAS  Google Scholar 

  • Lafitte R, Yongsheng G, Yan S, Lil K (2007) Whole plant responses, key processes, and adaptation to drought stress: the case of rice. J Exp Bot 58:169–175

    Article  CAS  PubMed  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87

    Article  CAS  Google Scholar 

  • Lum S, Hanafi M, Rafii M, Akmar N (2014) Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. J Anim Plant Sci 24:1487–1493

    Google Scholar 

  • Mafakheri A, Siosemardeh A, Bahramnejad B, Struik C, Sohrabi Y (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust J Crop Sci 4:580–585

    CAS  Google Scholar 

  • Marulanda A, Barea M, Azcón R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick R (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance in maize. J Plant Interact 9:689–701

    Article  Google Scholar 

  • Nilsen T, Orcutt M (1996) The physiology of plants under stress. Wiley, New York

    Google Scholar 

  • Rahdari P, Hoseini M, Tavakoli S (2012) The studying effect of drought stress on germination, proline, sugar, lipid, protein and chlorophyll content in Purslane (Portulaca oleracea L.) leaves. J Med Plant Res 6:1539–1547

    CAS  Google Scholar 

  • Rampino P, Pataleo S, Gerardi C, Perotta C (2006) Drought stress responses in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ 29:2143–2152

    Article  CAS  PubMed  Google Scholar 

  • Rejeb I, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plan Theory 3:458–475

    Google Scholar 

  • Samarah H (2005) Effects of drought stress on growth and yield of barley. Agron Sustain Dev 25:145–149

    Article  Google Scholar 

  • Sankar B, Jaleel A, Manivannan P, Kishorekumar A, Somasundaram R, Panneerselvam R (2007) Drought-induced biochemical modifications and proline metabolism in Abelmoschus esculentus (L) Moench. Acta Bot Croat 61:43–56

    Google Scholar 

  • Saravanakumar D, Kavino M, Raguchander T, Subbian P, Samiyappan R (2011) Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol Plant 33:203–209

    Article  CAS  Google Scholar 

  • Sarma R, Saikia R (2014) Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil 377:111–126

    Article  CAS  Google Scholar 

  • Selvakumar G, Panneerselvam P, Ganeshamurthy N (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Maheshwari K (ed) Bacteria in agrobiology: stress management. Springer, Berlin/Heidelberg, pp 205–224

    Chapter  Google Scholar 

  • Serraj R, Sinclair R (2002) Osmolyte accumulation: can it really help increase crop yield under drought condition? Plant Cell Environ 25:331–341

    Article  Google Scholar 

  • Shakir A, Asghari B, Arshad M (2012) Rhizosphere bacteria containing ACC deaminase conferred drought tolerance in wheat grown under semi-arid climate. Soil Environ 31:108–112

    CAS  Google Scholar 

  • Silvente S, Sobolev P, Lara M (2012) Metabolite adjustment in drought tolerant and sensitive genotypes in response to water stress. PLoS One 7:e38554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudhakar P, Kumar K, Latha P, Sruthi S, Sujatha K, Reddy B, Reddy R, Rajareddy K, Krishna G, Reddy S (2013) Recent advances in biofertilizers and biofungicides (PGPR) for sustainable agriculture. In: Reddy S, Ilao I, Faylon S, Dar D, Sayyed R, Sudini H, Kumar K, Armada A (eds) Proceeding of 3rd Asian Conference on plant growth promoting rhizobacteria (PGPR) and other microbes. Manila, Philippines, pp 268–274

    Google Scholar 

  • Timmusk S, Grantcharova N, Wagner G (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Abd El-Daim IA, Lucian C, Tanilas T, Kannaste A, Behers L, Nevo E, Seisenbaeva G, Stenstrom E, Niinemets U (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9:1–13

    Article  Google Scholar 

  • Vilchez I, Garcia-Fontana C, Roman-Naranjo D, Gonzalez-Lopez J, Manzanera M (2016) Plant drought tolerance enhancement by trehalose production of desiccation-tolerant microorganisms. Front Microbiol 7:1577

    Article  PubMed  PubMed Central  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad R (2007) Heat tolerance in plants: an overview. Environ Exp Biol 61:199–223

    Google Scholar 

  • Wilkinson S, Davies J (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to the community. Plant Cell Environ 33:510–525

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Lambrides C, Kearns R, Ye C, Fukai S (2012) Water use, water use efficiency and drought resistance among warm-season turfgrasses in shallow soil profiles. Funct Plant Biol 39:116–125

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waghmode, M., Gunjal, A., Patil, N., Nawani, N. (2019). Role of Rhizobacteria in Drought Tolerance. In: Sayyed, R., Arora, N., Reddy, M. (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management . Microorganisms for Sustainability, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-13-6536-2_17

Download citation

Publish with us

Policies and ethics