Skip to main content

Well-Posedness of Nonlocal Boundary-Value Problems and Schrödinger Equations

  • Chapter
  • First Online:
Schrödinger Equations in Nonlinear Systems
  • 969 Accesses

Abstract

Questions related to the well-posedness of differential problems in the mathematical modeling of real objects, phenomena, and processes form are essential and very important part of problems of the description of real objects by mathematical means. Mathematically, a given boundary-value problem is said to be well-posed (in Hadamard sense) if (a) a solution exists, (b) the solution is unique, and (c) the solution is stable, that is, continuously depends on the data (initial and/or boundary conditions) of the problem. If at least one of these three conditions is violated, the problem is said to be ill-posed. In this chapter, we introduce the notion of well-posedness of nonlocal boundary-value problems for equations of Schrödinger type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellman, R., Cooke, K.L.: Differential-Difference Equations. Academic, New York (1963)

    MATH  Google Scholar 

  2. Bienaimé, P.-Y., Boulkhemair, A.: Well-posedness and smoothing effect for generalized nonlinear Schrödinger equations (2017). https://hal.archives-ouvertes.fr/hal-01515658v2

  3. Borok, V.M., Fardigola, L.V.: Nonlocal boundary-value problems in a layer. Mat. Zametki 48(1), 20 (1990)

    MathSciNet  MATH  Google Scholar 

  4. Borok, V.M., Kengne, E.: Classification of nonlocal boundary-value problems on a narrow strip. Ukr. Math. J. 46(4), 352 (1994)

    Article  MathSciNet  Google Scholar 

  5. Bourgain, J.: Refinement of Strichartz inequality and applications to 2D NLS with critical nonlinearity. Int. Math. Res. Notices 5, 253 (1998)

    Article  Google Scholar 

  6. Chihara, H.: Local existence for semilinear Schrödinger equations. Math. Jpn. 42, 35 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Dezin, A.A.: Simplest solvable extensions for ultrahyperbolic and pseudoparabolic operators. Dokl. Akad. Nauk SSSR 148(5), 1013 (1963)

    MathSciNet  MATH  Google Scholar 

  8. Dezin, A.A.: General Questions of the Theory of Boundary Value-Problems. Nauka, Moscow (1980)

    MATH  Google Scholar 

  9. Fardigola, L.V.: A well-posedness criterion in a layer for a boundary-value problem with an integral condition. Ukr. Mat. Zh. 42(11), 1546 (1990)

    Article  MathSciNet  Google Scholar 

  10. Gantmakher, F.R.: Theory of Matrices. Nauka, Moscow (1988). [in Russian]

    Google Scholar 

  11. Gérard, P.: Nonlinear Schrödinger equations in inhomogeneous media: wellposedness and illposedness of the Cauchy problem. In: Proceedings of the International Congress of Mathematicians. Madrid, Spain (2006)

    Google Scholar 

  12. Hadamard, J.: Le probleme de Cauchy et les equations aux derivees partielles lineaires hyperboliques. Hermann, Paris (1932)

    MATH  Google Scholar 

  13. Hayashi, N.: The initial value problem for the derivative nonlinear Schrödinger equation in the energy space. Nonlinear Anal. 20(7), 833 (1993)

    Article  Google Scholar 

  14. Hayashi, N., Ozawa, T.: Remarks on nonlinear Schrödinger equations in one space dimension. Differ. Integr. Equ. 2, 453 (1994)

    MATH  Google Scholar 

  15. Ilkiv, V.S.: A nonlocal boundary value-problem for normal anisotropic systems of partial differential equations with constant coefficients. Visn. L’viv. Univ. Ser. Mech.-Math. 54, 84 (1999)

    Google Scholar 

  16. Kalenyuk, P.I., Nytrebych, Z.M.: Construction of solutions of certain boundary-value problems for linear partial differential equations admitting separation of variables. In: Boundary Value-Problems with Various Degenerations and Singularities, pp. 62–71. Ruta, Chernivtsi (1990)

    Google Scholar 

  17. Kengne, E.: Asymptotically well-posed boundary value-problems. Ukr. Math. J. 56(2), 169 (2004)

    Article  MathSciNet  Google Scholar 

  18. Kengne, E.: On the well-posedness of a two-point boundary-value problem for a system with pseudodifferential operators. Ukr. Math. J. 57(8), 1334 (2005)

    Article  MathSciNet  Google Scholar 

  19. Kengne, E.: Nonlocal boundary value-problems for partial differential equations with variable coefficients. Afr. Diaspora J. Math. 5(1), 11 (2006)

    MathSciNet  Google Scholar 

  20. Kengne, E., Pelap, F.B.: Regularity of two-point boundary value problems. Afr. Mat. 3(12), 61 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Kenig, C.E., Ponce, G., Vega, L.: Small solutions to nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 10, 255 (1993)

    Google Scholar 

  22. Kenig, C.E., Ponce, G., Vega, L.: The cauchy problem for the quasilinear Schrödinger equation. Invent. Math. 158, 343 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  23. Kiguradze, T.I.: On solutions of quasilinear hyperbolic systems bounded and periodic in a strip. Differentsial’nye Uravneniya 30(10), 1760 (1994)

    Google Scholar 

  24. Mitropolskii, Y.A., Urmancheva, L.B.: On a two-point problem for a system of hyperbolic equations. Ukr. Math. J. 42(2), 1657 (1990)

    MathSciNet  Google Scholar 

  25. Naimark, M.A.: Linear Differential Operators. Nauka, Moscow (1969)

    Google Scholar 

  26. Ozawa, T.: On the nonlinear Schrödinger equations of derivative type. Indiana Univ. Math. J. 45(1), 137 (1996)

    Article  MathSciNet  Google Scholar 

  27. Petrovskii, I.G.: Lectures on the Theory of Ordinary Differential Equations. Nauka, Moscow (1970). [in Russian]

    Google Scholar 

  28. Petrovskii, I.G.: On the Cauchy problem for a system of linear partial differential equations in a region of nonanalytic functions. Bull. Mosk. Univ. Sect. A 1(7), 1 (1938)

    Google Scholar 

  29. Ptashnik, B.I.: Ill-Posed Boundary-Value Problems for Partial Differential Equations. Naukova Dumka, Kiev (1984)

    Google Scholar 

  30. Romanko, V.K.: On systems of operator differential equations. Differentsial’nye Uravneniya 23(9), 1574 (1987)

    MathSciNet  Google Scholar 

  31. Takaoka, Hideo: Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces. Electron. J. Differ. Equ. 42, 1 (2001)

    MATH  Google Scholar 

  32. Takhtajan, L.A., Faddeev, L.D.: Hamiltonian Methods in the Theory of Solitons. Nauka, Moscow (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu-Ming Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, WM., Kengne, E. (2019). Well-Posedness of Nonlocal Boundary-Value Problems and Schrödinger Equations. In: Schrödinger Equations in Nonlinear Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-6581-2_2

Download citation

Publish with us

Policies and ethics