Skip to main content

Dielectric Gels

  • Chapter
  • First Online:
Soft Actuators
  • 1476 Accesses

Abstract

Dielectric gels of various types are recently found electrically active, and can be used for actuators. Polymer gels swollen with large amount of dielectric solvent deforms by applying dc voltage. The deformation is based on the solvent flow (or ion drag) through the polymer network. They shows contractile, bending, and crawling deformation. Advantages are very swift deformation in air, small electric current, and large strain up to over 10 % depending on the degree of crosslinks among the polymer chain. Disadvantages are low durability because of the solvent bleed-out, and relatively high voltage.

Dielectric elastomers (sometime gel-like) can be good candidate when the polymer chains are flexible enough and sensitive enough to the electric field, although flexible polymer chains can not take the role of solvents. Similarity to the gel is that the electrically induced asymmetric charge distribution causes the bending deformation. Advantages of this system are low electric current, relatively swift deformation at high voltage, and good durability. Disadvantages of this system are requirement of high voltage, small strain, and basically very limited stress. For attaining large strain, very high voltages are necessary for the actuation such as over 10 kV/mm. We show the cases of polyurethane and poly(methyl methacrylate-b-n-butyl acrylate-b-methyl methacrylate) triblock copolymer.

Plasticized polymer system provides another possibility, and we think at this moment the best candidate from the viewpoint of easy processing and variable possibilities. Polymers with large content of plasticizer (we call this category as “polymer gel” in stead of plasticized polymer) shows peculiar deformation such as amoeba-like creep deformation. In some cases, we investigated the gels show high power, high toughness, very low current, and variable application possibilities. The characteristics comes out from the very large dielectric constant from the cooperative interaction between the polymer and plasticizer both of which have very low dielectric constant. By applying the characteristic properties, not only the electro-mechanical function but also the electro-optical functions and mechano-electric functions are found.

Through these investigations, we could conclude the dielectric gels have great possibilities as novel type of electro-active materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katchalsky A (1949) Experientia 5:319

    Article  CAS  Google Scholar 

  2. Osada Y (1987) Conversion of chemical into mechanical energy by synthetic polymers (Chemomechanical System). In: Advances in polymer science, vol 82, Springer, Berlin

    Google Scholar 

  3. Tanaka T, Ishiwata S, Ishimoto C (1977) Critical behavior of density fluctuations in gels. Phys Rev Lett 38(14):771–774

    Article  CAS  Google Scholar 

  4. Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242–244

    Article  CAS  Google Scholar 

  5. Tanaka T et al (1982) Collapse of gels in an electric field. Science 218:467–469

    Article  CAS  Google Scholar 

  6. Hirai T et al (1991) Fluttering wings – first step for flying up-above into the sky? Preprints of second symposium on polymer gels, December 10–11, Tsukuba, Japan, p 129

    Google Scholar 

  7. Hirai T et al (1991) Actuation of poly(vinyl alcohol) gel by applying electric field. Preprints of second symposium on polymer gels, pp 67–68

    Google Scholar 

  8. Hirai T et al (1991) Actuation of PVA gel by electric field. Polymer Prep 40(7):2116–2118

    Google Scholar 

  9. Hirai T et al (1993) Actuation of poly(vinyl alcohol) gel by electric field. J Intell Mater Syst Struc 4:277–279

    Article  Google Scholar 

  10. Hirai M, Hirai T, Ueki T (1994) Growing process of scattering density fluctuation of a medium distance in the hydrogel of poly(vinyl alcohol) under stretching. Macromolecules 27(4):1003–1006

    Article  CAS  Google Scholar 

  11. Hirai T et al (1994) Electrostriction of highly swollen polymer gel: possible application for gel actuator. J Appl Polym Sci 53(1):79–84

    Article  CAS  Google Scholar 

  12. Hirai M et al (1995) Electrically induced reversible structural change of a highly swollen polymer gel network. J Chem Soc Faraday Trans 91:473–477

    Article  CAS  Google Scholar 

  13. Hirai T et al (2000) Electroactive non-ionic gel and its application. In: Bar-Cohen Y (ed) Proceedings of the SPIE, smart structures and materials 2000: electroactive polymer actuators and devices (EAPAD), vol 3987, pp 281–290

    Google Scholar 

  14. Stuetzer OM (1959) Ion drag pressure generation. J Appl Phys 30(7):984–994

    Article  Google Scholar 

  15. Hirai T et al (1996) Polyurethane elastomer actuator. Angew Makromol Chem 240:221–229

    Article  CAS  Google Scholar 

  16. Watanabe M et al (1997) Bending deformation of monolayer polyurethane film induced by an electric field. Chem Lett 1997:773–774

    Article  Google Scholar 

  17. Watanabe M et al (1999) Effects of polymer networks on the bending electrostriction of polyurethanes. In: Elgsaeter A, Stokke BT (eds) The Wiley polymer networks group review, vol 2. Wiley

    Google Scholar 

  18. Watanabe M, Hirai T (2004) Close relationship between bending-electrostrictive response and space charge distribution in a polyurethane film. J Appl Phys 43:1446–1448

    Article  CAS  Google Scholar 

  19. Kornbluh R et al (2000) Ultra-high strain response of elastomeric polymer dielectrics. In: Materials research society symposium proceedings. Electroactive Polymers (EAP), vol 600, pp 119–130

    Google Scholar 

  20. Pelrine R et al (2001) Applications of dielectric elastomer actuators. In: Proceedings of the SPIE international society for optical engineering. Electroactive polymer actuators and devices, vol 4329, pp 335–349

    Google Scholar 

  21. Uddin MZ et al (2001) Electrically induced creeping and bending deformation of plasticized poly(vinyl chloride). Chem Lett 2001:360–361

    Article  Google Scholar 

  22. Hirai T et al (2003) Electroactive artificial muscle: nonionic polymer gels and elastomers. In: Mohan S, Dattaguru B, Gopalakrishnan S (eds) Proceedings of the SPIE, smart materials, structures, and systems, vol 5062, pp 378–388

    Google Scholar 

  23. Hirai T et al (2003) Quick and large electrostrictive deformation of non-ionic soft polymer materials. In: Bar-Cohen Y (eds) Proceedings of the SPIE, smart structures and materials 2003: electroactive polymer actuators and devices (EAPAD), vol 5051, pp 198–206

    Google Scholar 

  24. Hirai T, Ogiwara T, Fujii K, Ueki T, Kinoshita K, Takasaki M (2009) Electrically active artificial pupil showing amoeba-like pseudopodial deformation. Adv Mater 21(28):2886–2888

    Article  CAS  Google Scholar 

  25. Hirai T, Uddin MZ, Zheng J, Watanabe M, Shirai H (2002) Electroactive artificial muscle: non-ionic polymer gels and elastomers. In: Proceedings of international conference on smart materials, structures & systems. Microart, Bangalore

    Google Scholar 

  26. Uddin MZ et al (2002) Creeping and novel huge bending of plasticized PVC. J Robot Mechatr 14(2):118–123

    Article  Google Scholar 

  27. Ali M et al (2011) Influence of plasticizer content on the transition of electromechanical behavior of PVC gel actuator. Langmuir 27(12):7902–7908

    Article  CAS  Google Scholar 

  28. Ali M, Hirai T (2011) Characteristics of the creep-induced bending deformation of a PVC gel actuator by an electric field. J Mater Sci 46(24):7681–7688

    Article  CAS  Google Scholar 

  29. Ali M, Hirai T (2012) Effect of plasticizer on the electric-field-induced adhesion of dielectric PVC gels. J Mater Sci 47(8):3777–3783

    Article  CAS  Google Scholar 

  30. Ali M, Hirai T (2012) Relationship between electrode polarization and electrical actuation of dielectric PVC gel actuators. Soft Mater 8:3694–3699

    Article  CAS  Google Scholar 

  31. Xia H, Ueki T, Hirai T (2011) Direct observation by laser scanning confocal microscopy of microstructure and phase migration of PVC gels in an applied electric field. Langmuir 27(3):1207–1211

    Article  CAS  Google Scholar 

  32. Xia H, Takasaki M, Hirai T (2010) Actuation mechanism of plasticized PVC by electric field. Sens Actuators A Phys 157:307–312

    Article  CAS  Google Scholar 

  33. Xia H, Hirai T (2010) Electric-field-induced local layer structure in plasticized PVC actuator. J Phys Chem B 114(33):10756–10762

    Article  CAS  Google Scholar 

  34. Satou H, Hirai T (2013) Electromechanical and electro-optical functions of plasticized PVC with colossal dielectric constant. In: Proceedings of SPIE, electroactive polymer actuators and devices (EAPAD), vol 8687, p 868728-1-7

    Google Scholar 

  35. Tanaka Y, Hirai T (2013) Mechanoelectric function of plasticized poly(vinyl chloride) for impact sensor and energy harvesting. In: 62nd SPSJ symposium on macromolecules, polymer preprints, Japan, vol 3635. The Society of Polymer Science, Kanazawa University, Kanazawa, Japan. p 2ESB1

    Google Scholar 

  36. Tsurumi D, Hirai T (2013) Electrically induced oscillatory motion of dielectric soft polymer materials. In: 62nd SPSJ symposium on macromolecules, polymer preprints, Japan, vol 3637. The Society of Polymer Science, Japan. p 2ESB12

    Google Scholar 

  37. Chattok AP (1899) On the velocity and mass of the ions in the electric wind in air (fifth series). Phil Mag 48(294):401–420

    Article  Google Scholar 

  38. Stuetzer OM (1959) Instability of certain electrohydrodynamic systems. Phys Fluids 2(6):642–648

    Article  Google Scholar 

  39. Pickard WF (1963) Ion drag pumping. II. Experiment. J Appl Phys 34(2):251–258

    Article  Google Scholar 

  40. Pickard WF (1963) Ion drag pumping. I. Theory. J Appl Phys 34(2):246–250

    Article  Google Scholar 

  41. Jorgenson GV, Will E (1962) Improved ion drag pump. Rev Sci Instrum 33(1):55–56

    Article  Google Scholar 

  42. Fujita H (1988) Micro-actuator and micromechanical parts. IEEJ Trans 108(3):214–217

    Article  Google Scholar 

  43. Tsuchida N, Satou H, Ueda M (1983) The mobilities of various impurity ions in silicone oil. IEEE Trans Jpn 103(1):47–52

    Google Scholar 

  44. Tsuchida N, J O, Murata R, Yamada Y, Imai K (1993) Studies on DC micro motor employing EHD stream by ion drag. IEEE Trans Jpn 113(12):1442–1448

    Article  Google Scholar 

  45. Hirai T (1991) High speed responding polymer gel actuator. Japan patent has been requested

    Google Scholar 

  46. Hirai T, Hirai M, Hayashi S, Ueki T (1992) Study of the conformational change of amylose induced by complexation with iodine using synchrotron X-ray small-angle scattering. Macromolecules 25(24):6699–6702

    Article  CAS  Google Scholar 

  47. Watanabe M et al (2003) A pumping technique using electrohydrodynamic flow inside a gel. IEEE Trans Dielectr Electr Insul 10(1):181–185

    Article  CAS  Google Scholar 

  48. Watanabe M et al (1999) Effects of polymer networks on the bending electrostriction of polyurethanes. In: Wiley polymer networks group review series, vol 2 (Synthetic versus Biological Networks), pp 213–221

    Google Scholar 

  49. Watanabe M et al (2000) Hysteresis in bending electrostriction of polyurethane films. J Appl Polym Sci 79(6):1121–1126

    Article  Google Scholar 

  50. Xiu Y et al (1993) Morphology-property relationship of segmented polyurethaneurea: influences of soft-segment structure and molecular weight. J Appl Polym Sci 48:867–869

    Article  CAS  Google Scholar 

  51. Jang Y, Hirai T (2011) A control method for triblock copolymer actuators by nano-lamellar pattern. Soft Mater 7(22):10818–10823

    Article  CAS  Google Scholar 

  52. Jang Y et al (2011) Performance of PMMA-PnBA-PMMA dielectric film actuator with controllable phase morphology. Sens Actuators A Phys 168:300–306

    Article  CAS  Google Scholar 

  53. Yasuda A, Kinoshita T, Hirai T (2011) Focusing device and imaging device. Seiko Precision Inc., Chiba, p 10

    Google Scholar 

  54. Hirai T et al (2012) Plasticized poly(vinyl chloride) gel as super paraelectric actuator. In: IUMRS-international conference on electronic materials (IUMRS-ICEM 2012), 23–28 September, 2012. The Materials Research Society of Japan (MRS-J), Pacifico Yokohama, Yokohama, Japan

    Google Scholar 

  55. Sato H, Gotoh Y, Hirai T (2013) The electro-optic effect of PVA gel and PVC gel. In: 62nd SPSJ symposium on macromolecules, polymer preprints, Japan, vol 3639. The Society of Polymer Science, Kanazawa University, Kanazawa, Japan, p 2ESB13

    Google Scholar 

  56. Haken H, Wagner M (1973) Cooperative phenomena. Springer, Berlin

    Book  Google Scholar 

  57. Zwicky F (1933) On cooperative phenomena. Phys Rev 43(4):270–278

    Article  CAS  Google Scholar 

  58. Xia H, Hashimoto Y, Hirai T (2012) Electric-field-induced actuation of poly(vinyl alcohol) microfibers. J Phys Chem C 116:23236–23242

    Article  CAS  Google Scholar 

  59. Xia H, Hirai T (2013) New shedding motion, based on electroactuation force, for micro- and nanoweaving. Adv Eng Mater Commun 2013:1–4

    Google Scholar 

  60. Hirai T, Zheng J, Watanabe M, Shirai H (2001) Electrically active polymer materials: application of non-ionic polymer gel and elastomers for artificial muscles. In: Tao XM (ed) Smart fibres, fabrics and clothing: fundamentals and applications. CRC, Boca Raton

    Google Scholar 

  61. Sakurai T (2012) Smart community and ambient electronics. Panasonic Tech J 58(1):4–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Hirai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hirai, T. (2019). Dielectric Gels. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Singapore. https://doi.org/10.1007/978-981-13-6850-9_13

Download citation

Publish with us

Policies and ethics