Skip to main content

Clinical Applications of UHMWPE in Joint Implants

  • Chapter
  • First Online:
UHMWPE Biomaterials for Joint Implants

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 13))

Abstract

Artificial joint implants have been widely applied in clinical surgery of joint replacement for those patients whose natural joints suffer from trauma, disease, or overuse. Typical artificial joints consist of a metallic component integrated with bone and a polymer component that facilitates movement. The requirements for the polymer include biocompatibility, toughness, wear resistance, lubrication, etc. Over the past 50 years, ultrahigh-molecular-weight polyethylene (UHMWPE) has been used to fabricate artificial hips, knees, shoulders, and other joints. In this chapter, a historical development of artificial joint implants for arthroplasty is briefly reviewed. The fundamental physicochemical properties and processing of UHMWPE are summarized to demonstrate its superiority in the application of artificial joint implants. In view of clinical outcomes, main challenges of conventional UHMWPE joint implants are finally discussed, such as oxidation degradation, sterilization, wear, and debris.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kurtz S, Mowat F, Ong K, Chan N, Lau E, Halpern M (2005) Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002. J Bone Joint Surg Am 87A(7):1487–1497

    Google Scholar 

  2. Maradit KH, Larson DR, Crowson CS, Kremers WK, Washington RE, Steiner CA, Jiranek WA, Berry DJ (2015) Prevalence of total hip and knee replacement in the United States. J Bone Joint Surg Am 97(17):1386–1397

    Article  Google Scholar 

  3. Kurtz S, Ong K, Lau E, Mowat F, Halpern M (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 89(4):780–785

    Article  Google Scholar 

  4. Speed JS, Smith H (1940) Arthroplasty – a review of the past ten years. Surg Gynecol Obstet 70:224–230

    Google Scholar 

  5. Learmonth ID, Young C, Rorabeck C (2007) The operation of the century: total hip replacement. Lancet 370(9597):1508–1519

    Article  Google Scholar 

  6. Brown SR, Davies WA, DeHeer DH, Swanson AB (2002) Long-term survival of McKee-Farrar total hip prostheses. Clin Orthop Relat Res 402:157–163

    Article  Google Scholar 

  7. McKellop H, Park SH, Chiesa R, Doorn P, Lu B, Normand P, Grigoris P, Amstutz H (1996) In vivo wear of 3 types of metal on metal hip prostheses during 2 decades of use. Clin Orthop Relat Res 329:S128–S140

    Article  Google Scholar 

  8. Charnley J (1961) Arthroplasty of the hip: a new operation. Lancet 277(7187):1129–1132

    Article  Google Scholar 

  9. Charnley J (1973) Arthroplasty of the hip: a new operation. Clin Orthop Relat Res 95:4–8

    Google Scholar 

  10. MacDonald SJ, Brodner W, Jacobs JJ (2004) A consensus paper on metal ions in metal-on-metal hip arthroplasties. J Arthroplast 19(8):12–16

    Article  Google Scholar 

  11. Firkins PJ, Tipper JL, Saadatzadeh MR, Ingham E, Stone MH, Farrar R, Fisher J (2001) Quantitative analysis of wear and wear debris from metal-on-metal hip prostheses tested in a physiological hip joint simulator. Biomed Mater Eng 11(2):143–157

    CAS  Google Scholar 

  12. Hallab NJ, Anderson S, Caicedo M, Skipor A, Campbell P, Jacobs JJ (2004) Immune responses correlate with serum-metal in metal-on-metal hip arthroplasty. J Arthroplast 19(8):88–93

    Article  Google Scholar 

  13. Katti KS (2004) Biomaterials in total joint replacement. Colloids Surf B Biointerfaces 39(3):133–142

    Article  CAS  Google Scholar 

  14. Christel PS (1992) Biocompatibility of surgical-grade dense polycrystalline alumina. Clin Orthop Relat Res 282:10–18

    Google Scholar 

  15. Hannouche D, Nich C, Bizot P, Meunier A, Nizard RM, Sedel L (2003) Fractures of ceramic bearings – history and present status. Clin Orthop Relat Res 417:19–26

    Google Scholar 

  16. Mai K, Verioti C, Ezzet KA, Copp SN, Walker RH, Colwell CW Jr (2010) Incidence of ‛squeaking’ after ceramic-on-ceramic total hip arthroplasty. Clin Orthop Relat Res 468(2):413–417

    Google Scholar 

  17. Schwartsmann CR, Boschin LC, Gonçalves RZ, Yépez AK, de Freitas Spinelli L (2012) New bearing surfaces in total hip replacement. Rev Bras Ortop 47(2):154–159

    Article  Google Scholar 

  18. Malchau H (2002) Prognosis of total hip replacement: update of results and risk-ratio analysis for revision and re-revision from the Swedish National Hip Arthroplasty Register 1979–2000. In: 69th annual meeting of American Academy of Orthopedic Surgeons, Dallas, Texas

    Google Scholar 

  19. Kelly JM (2002) Ultra-high molecular weight polyethylene. J Macromol Sci C Polym Rev C42(3):355–371

    Article  CAS  Google Scholar 

  20. Spiegelberg S (2009) Chapter 24 – Characterization of physical, chemical, and mechanical properties of UHMWPE A2 – Kurtz, Steven M. In: Kurtz S (ed) UHMWPE biomaterials handbook, 2nd edn. Academic, Boston, pp 355–368

    Chapter  Google Scholar 

  21. Ansari F, Gludovatz B, Kozak A, Ritchie RO, Pruitt LA (2016) Notch fatigue of ultrahigh molecular weight polyethylene (UHMWPE) used in total joint replacements. J Mech Behav Biomed Mater 60:267–279

    Article  CAS  Google Scholar 

  22. Bracco P, del Prever EMB, Cannas M, Luda MP, Costa L (2006) Oxidation behaviour in prosthetic UHMWPE components sterilised with high energy radiation in a low-oxygen environment. Polym Degrad Stab 91(9):2030–2038

    Article  CAS  Google Scholar 

  23. Birkinshaw C, Buggy M, Daly S, Oneill M (1989) The effect of gamma-radiation on the physical structure and mechanical-properties of ultrahigh molecular-weight polyethylene. J Appl Polym Sci 38(11):1967–1973

    Article  CAS  Google Scholar 

  24. Bostrom MP, Bennett AP, Rimnac CM, Wright TM (1994) The natural-history of ultra-high-molecular-weight polyethylene. Clin Orthop Relat Res 309:20–28

    Google Scholar 

  25. Harris WH (2001) Wear and periprosthetic osteolysis – the problem. Clin Orthop Relat Res 393:66–70

    Google Scholar 

  26. Goodman SB (2007) Wear particles, periprosthetic osteolysis and the immune system. Biomaterials 28(34):5044–5048

    Article  CAS  Google Scholar 

  27. Ingham E, Fisher J (2005) The role of macrophages in osteolysis of total joint replacement. Biomaterials 26(11):1271–1286

    Article  CAS  Google Scholar 

  28. Chiba J, Schwendeman LJ, Booth RE, Crossett LS, Rubash HE (1994) A biochemical, histologic, and immunohistologic analysis of membranes obtained from failed cemented and cementless total knee arthroplasty. Clin Orthop Relat Res 299:114–124

    Google Scholar 

  29. Fubini B (1997) Surface reactivity in the pathogenic response to particulates. Environ Health Perspect 105:1013–1020

    Google Scholar 

  30. Brach del Prever EM, Bistolfi A, Costa L, Bracco P, Linari A, Botto Micca F, Crova M, Gallinaro P (2003) The biological reaction to polyethylene wear debris can be related with oxidation of the UHMWPE cups. Chir Organi Mov 88:291–303

    CAS  Google Scholar 

  31. Wright TM, Astion DJ, Bansal M, Rimnac CM, Green T, Insall JN, Robinson RP (1988) Failure of carbon fiber-reinforced polyethylene total knee-replacement components. A report of two cases. J Bone Joint Surg Am 70(6):926–932

    Article  CAS  Google Scholar 

  32. Farling GM (1976) Human body implant of graphitic carbon fiber reinforced ultra-high molecular weight polyethylene. USA Patent, 4055862

    Google Scholar 

  33. Ainsworth RFG, Bardos D (1977) An improved bearing material for joint replacement prostheses: carbon fiber-reinfored UHMW polyethylene. Trans Third Soc Biomater 3:119

    Google Scholar 

  34. Connelly GM, Rimnac CM, Wright TM, Hertzberg RW, Manson JA (1984) Fatigue crack propagation behavior of ultrahigh molecular weight polyethylene. J Orthop Res 2(2):119–125

    Article  CAS  Google Scholar 

  35. Deng M, Shalaby SW (1997) Properties of self-reinforced ultra-high-molecular-weight polyethylene composites. Biomaterials 18(9):645–655

    Article  CAS  Google Scholar 

  36. Suh NP, Mosleh M, Arinez J (1998) Tribology of polyethylene homocomposites. Wear 214(2):231–236

    Article  CAS  Google Scholar 

  37. Mosleh M (1998) An UHMWPE homocomposite for joint prostheses. In: Jacobs JJ, Craig TL (eds) Alternative bearing surfaces in total joint replacement. American Society for Testing and Materials, West Conshohoken, pp 256–265

    Chapter  Google Scholar 

  38. Price H, Lin S, Hawkins M, Parr J (1997) Reinforced polyethylene for articular surfaces. USA Patent, 5609638

    Google Scholar 

  39. Siskey R, Smelt H, Boon-Ceelen K, Persson M (2016) UHMWPE homocomposites and fibers. In: Kurtz S (ed) UHMWPE biomaterials handbook, 3rd edn. William Andrew Publishing, Oxford, pp p398–p411

    Chapter  Google Scholar 

  40. Grand View Research (2016) Medical grade ultra high molecular weight polyethylene (uhmwpe) market analysis by application (total hip replacement, knee replacement, shoulder replacement, ankle replacement, small joints) and segment forecast to 2024

    Google Scholar 

  41. Costa L, Bracco P (2004) Mechanisms of crosslinking, oxidative degradation and stabilization of UHMWPE. In: Kurtz S (ed) UHMWPE biomaterials handbook. Elsevier Academic Press, Boston, pp 309–323

    Google Scholar 

  42. Kurtz S, Rimnac C, Hozack W, Turner J, Marcolongo M, Goldberg V, Kraay M, Edidin A (2005) In vivo degradation of polyethylene liners after gamma sterilization in air. J Bone Joint Surg 87(4):815–823

    Article  Google Scholar 

  43. McKellop H, Shen F, Lu B, Campbell P, Salovey R (2000) Effect of sterilization method and other modifications on the wear resistance of acetabular cups made of ultra-high molecular weight polyethylene. J Bone Joint Surg 82A(12):1708–1725

    Article  Google Scholar 

  44. Sutula LC, Collier JP, Saum KA, Currier BH, Currier JH, Sanford WM, Mayor MB, Wooding RE, Sperling DK, Williams IR, Kasprzak DJ, Surprenant VA (1995) Impact of gamma-sterilization on clinical-performance of polyethylene in the hip. Clin Orthop Relat Res 319:28–40

    Google Scholar 

  45. Won C, Rohatgi S, Kraay M, Goldberg V, Rimnac C (2000) Effect of resin type and manufacturing method on wear of polyethylene tibial components. Clin Orthop Relat Res 376:161–171

    Google Scholar 

  46. Williams IR, Mayor MB, Collier JP (1998) The impact of sterilization method on wear in knee arthroplasty. Clin Orthop Relat Res 356:170–180

    Google Scholar 

  47. Kurtz S, Rimnac C, Rimnac C, Hozack W, Turner J, Marcolongo M, Goldberg V, Kraay M, Edidin A (2005) In vivo degradation of polyethylene liners after gamma sterilization in air. J Bone Joint Surg 87(4):815–823

    Article  Google Scholar 

  48. Currier B, Currier J, Mayor M, Lyford K, Van Citters D, Collier J (2007) In vivo oxidation of gammabarrier-sterilized ultra-high-molecular-weight polyethylene bearings. J Arthroplast 22(5):721–731

    Article  Google Scholar 

  49. Birman M, Noble P, Conditt M, Li S, Mathis K (2005) Cracking and impingement in ultra-high-molecular-weight polyethylene acetabular liners. J Arthroplast 20(Suppl. 3):87–92

    Article  Google Scholar 

  50. Chiu Y-S, Chen W-M, Huang C-K, Chiang C-C, Chen T-H (2004) Fracture of the polyethylene tibial post in a NexGen posterior-stabilized knee prosthesis. J Arthroplast 19(8):1045–1049

    Article  Google Scholar 

  51. Green T, Fisher J, Matthews J, Stone M, Ingham E (2000) Effect of size and close on bone resorption activity of macrophages by in vitro clinically relevant ultra high molecular weight polyethylene particles. J Biomed Mater Res 53(5):490–497

    Article  CAS  Google Scholar 

  52. Greenwald A, Bauer T, Ries M (2001) New polys for old: contribution or caveat? J Bone Joint Surg 83:27–31

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media Singapore

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, J., Gao, G., Fu, J. (2019). Clinical Applications of UHMWPE in Joint Implants. In: Fu, J., Jin, ZM., Wang, JW. (eds) UHMWPE Biomaterials for Joint Implants. Springer Series in Biomaterials Science and Engineering, vol 13. Springer, Singapore. https://doi.org/10.1007/978-981-13-6924-7_1

Download citation

Publish with us

Policies and ethics