Skip to main content

Initial Point Prediction Based Parametric Active Contour Model for Left Ventricle Segmentation of CMRI Images

  • Conference paper
  • First Online:
Proceedings of International Joint Conference on Computational Intelligence

Abstract

This research work proposes an automatic segmentation approach of the left ventricle (LV) from cardiac magnetic resonance image (CMRI). Although the parametric active contour model (PACM) can be used to segment the LV of CMRI image, it requires the initial contour. This is a manual and time-consuming approach and the accuracy is subjective. The main contribution of this proposal is to introduce an artificial neural network based regression model to predict the initial contour to detect the LV area of a CMRI image. With the automatic predicted contour points by the proposed method, a number of CMRI images are segmented by PACM to get the LV area. The results demonstrate that the proposed automatic segmentation procedure can segment the LV area with negligible deviation with less required time. In addition, this research work also customizes the finely fitted parametric values of the PACM for the CMRI images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nichols M, Townsend N, Scarborough P, Rayner M (2013) Cardiovascular disease in Europe: epidemiological update. Eur Heart J 34:3028–3034

    Article  Google Scholar 

  2. Ali ER, Mohamad AM (2017) Diagnostic accuracy of cardiovascular magnetic resonance imaging for assessment of right ventricular morphology and function in pulmonary artery hypertension. Egypt J Chest Dis Tuberc 66:477–486

    Article  Google Scholar 

  3. Hadhoud MMA, Eladawy MI, Farag A, Montevecchi FM, Morbiducci U (2012) Left ventricle segmentation in cardiac MRI images. Am J Biomed Eng 2:131–135

    Article  Google Scholar 

  4. Andreopoulos A, Tsotsos JK (2008) Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Med Image Anal 12:335–357

    Article  Google Scholar 

  5. Souto M, Masip LR, Couto M, Suárez-Cuenca JJ, Martínez A et al (2013) Quantification of right and left ventricular function in cardiac MR imaging: comparison of semiautomatic and manual segmentation algorithms. Diagnostics 3:271–282

    Article  Google Scholar 

  6. Lu Y, Radau P, Connelly K, Dick A, Wright GA (2009) Segmentation of left ventricle in cardiac cine MRI: an automatic image-driven method. In: Ayache N, Delingette H, Sermesant M (eds) Functional imaging and modeling of the heart. Lecture notes in computer science, vol 5528. Springer, Berlin, Heidelberg

    Chapter  Google Scholar 

  7. Hu H, Liu H, Gao Z, Huang L (2013) Hybrid segmentation of left ventricle in cardiac MRI using gaussian-mixture model and region restricted dynamic programming. Magn Reson Imaging 31:575–584

    Article  Google Scholar 

  8. Dakua SP (2015) LV segmentation using stochastic resonance and evolutionary cellular automata. Int J Pattern Recognit Artif Intell 29:1–26

    Article  Google Scholar 

  9. Wang L, Pei M, Codella NCF et al (2015) Left ventricle: fully automated segmentation based on spatio-temporal continuity and myocardium information in cine cardiac magnetic resonance imaging (LV-FAST). Biomed Res Int 36758:1–9

    Google Scholar 

  10. Sanchez-ortiz GI (1999) Medical image computing and computer-assisted intervention-MICCAI’99, vol 1679

    Google Scholar 

  11. Suinesiaputra A, Cowan BR, Finn JP et al (2012) Left ventricular segmentation challenge from cardiac MRI: a collation study. In: Camara O et al (eds) Statistical atlases and computational models of the heart. Imaging and modelling challenges. Lecture notes in computer science, vol 7085, pp 88–97

    Chapter  Google Scholar 

  12. Lebenberg J, Lalande A, Clarysse P, Buvat I, Casta C et al (2015) Improved estimation of cardiac function parameters using a combination of independent automated segmentation results in cardiovascular magnetic resonance imaging. PLoS One 10

    Google Scholar 

  13. Ngo TA, Carneiro G (2013) Left ventricle segmentation from cardiac MRI combining level set methods with deep belief networks. In: IEEE international conference on image processing, pp 695–699

    Google Scholar 

  14. Constantinides C, Roullot E, Lefort M, Frouin F (2012) Fully automated segmentation of the left ventricle applied to cine MR images: description and results on a database of 45 subjects. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, pp 3207–3210

    Google Scholar 

  15. Wu Y, Wang Y, Jia Y (2013) Segmentation of the left ventricle in cardiac cine MRI using a shape-constrained snake model. Comput Vis Image Underst 117:990–1003

    Article  Google Scholar 

  16. Lee H, Codella NCF, Cham MD, Weinsaft JW, Wang Y (2010) Automatic left ventricle segmentation using iterative thresholding and an active contour model with adaptation on short-axis cardiac MRI. IEEE Trans Biomed Eng 57:905–913

    Article  Google Scholar 

  17. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour model. Int J Comput Vis 1:321–331

    Article  Google Scholar 

  18. Akram F, Garcia MA, Puig D (2017) Active contours driven by local and global fitted image models for image segmentation robust to intensity inhomogeneity. PLoS One 12

    Google Scholar 

  19. Tealab A, Hefny H, Badr A (2017) Forecasting of nonlinear time series using ANN. Future Comput Inform J 2:39–47

    Article  Google Scholar 

  20. Gencay R, Liu T (1997) Nonlinear modelling and prediction with feedforward and recurrent networks. Phys D 108:119–134

    Article  Google Scholar 

  21. Rahman MA, Ahmad M (2016) Movement related events classification from functional near infrared spectroscopic signal. In: International conference on computer and information technology, pp 1–6

    Google Scholar 

  22. Kumar R (2010) Snakes: active contour models. MATLAB central file exchange. https://www.mathworks.com/matlabcentral/fileexchange/28109-snakes-active-contour-models?focused=5156463&tab=function

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Al Noman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al Noman, M., Aowlad Hossain, A.B.M., Asadur Rahman, M. (2020). Initial Point Prediction Based Parametric Active Contour Model for Left Ventricle Segmentation of CMRI Images. In: Uddin, M., Bansal, J. (eds) Proceedings of International Joint Conference on Computational Intelligence. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-7564-4_45

Download citation

Publish with us

Policies and ethics