Skip to main content

Phytoremediation: Role of Mycorrhiza in Plant Responses to Stress

  • Chapter
  • First Online:
Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment
  • 944 Accesses

Abstract

Phytoremediation is not a new concept. However, it is important to understand plant’s ability to remediate contaminated soil and water alone or in association with microorganisms by absorbing toxic substances, metabolizing them into useful compounds within and eventually transpiring excess of them. Native plants due to their unique characteristics are able to clean up soil and water very often in association with mycorrhizal fungi. This chapter focuses phytoremediation as eco-friendly cleaning tool, its basic strategies, role of native plants in restoring wetland habitats and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams N, Carroll D, Madalinski K, Rock S, Wilson T, Pivetz P (2000) Introduction to phytoremediation. National Risk Management Research Laboratory, Cicinnati

    Google Scholar 

  • Alexander RB, Smith RA (1988) Trends in lead concentrations in major us rivers and their relation to historical changes in gasoline-lead consumption. JAWRA J Am Water Resour Assoc 24:557–569

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals – concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Allen MF, Boosalis MG (1983) Effects of two species of mycorrhizal fungi on drought tolerance of winter wheat. New Phytol 93:67–76

    Article  Google Scholar 

  • Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous aba during drought stress and recovery. J Exp Bot 59:2029–2041

    Article  CAS  Google Scholar 

  • Augé RM, Stodola AJ, Tims JE, Saxton AM (2001) Moisture retention properties of a mycorrhizal soil. Plant Soil 230:87–97

    Article  Google Scholar 

  • Bagyaraj D (2014) Mycorrhizal fungi in proc Indian. Natl Sci Acad 80:415–428

    Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC. (2000) Metal Hyperaccumulator Plants: A Review of the Ecology and Physiology of a Biological Resource for Phytoremediation of Metal-Polluted Soils. In: Terry, N. and Banuelos, G., Eds., Phytoremediation of Contaminated Soil and Water, Lewis Publishers, London, 85–107.

    Google Scholar 

  • Baker A, Brooks R (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Bestawy EE, Helmy S, Hussien H, Fahmy M, Amer R (2013) Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria. Appl Water Sci 3:181–192

    Article  CAS  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31(3):860–865

    Article  Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320(1–2):37–77

    Article  CAS  Google Scholar 

  • Cabral L, Soares CRFS, Giachini AJ, Siqueira JO (2015) Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. World J Microbiol Biotechnol 31(11):1655–1664

    Article  CAS  Google Scholar 

  • Chappell J (1998) Phytoremediation of TCE in groundwater using Populus. US Environmental Protection Agency, Office of Solid Waste and Emergency Response, Technology Innovation Office

    Google Scholar 

  • Chen H, Zheng C, Tu C, Shen Z (2000) Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 41:229–234

    Article  CAS  Google Scholar 

  • Cheng S (2003) Heavy metals in plants and phytoremediation. Environ Sci Polln Res 10:335–340

    Article  CAS  Google Scholar 

  • Chibuike G (2013) Use of mycorrhiza in soil remediation: a review. Sci Res Essays 8:679–1687

    Article  Google Scholar 

  • Chowdhary P, Yadav A, Singh R, Chandra R, Singh DP, Raj A, Bharagava RN (2018) Stress response of Triticum aestivum L. and Brassica juncea L. against heavy metals growing at distillery and tannery wastewater contaminated site. Chemosphere 206:122–131

    Article  CAS  Google Scholar 

  • Cicatelli A, Torrigiani P, Todeschini V, Biondi S, Castiglione S, Lingua G (2014) Arbuscular mycorrhizal fungi as a tool to ameliorate the phytoremediation potential of poplar: biochemical and molecular aspects. iForest-Biogeosciences and Forestry 7(5):333

    Article  Google Scholar 

  • Coninx L, Martinova V, Rineau F (2017) Mycorrhiza-assisted phytoremediation. In: Advances in botanical research, vol 83. Academic Press, pp 127–188

    Chapter  Google Scholar 

  • Danielson R, Visser S (1989) Host response to inoculation and behavior of introduced and indigenous ectomycorrhizal fungi of jack pine grown on oil-sands tailings. Can J For Res 19:1412–1421

    Article  Google Scholar 

  • De Souza MP, Lytle CM, Mulholland MM, Otte ML, Terry N (2000) Selenium assimilation and volatilization from dimethylselenoniopropionate by Indian mustard. Plant Physiol 122:1281–1288

    Article  Google Scholar 

  • Devinny J, Longcore T, Bina A, Kitts C, Osborne KH (2005) Phytoremediation with native plants. University of Southern California, Los Angeles

    Google Scholar 

  • Dobson AP, Bradshaw A, Baker A (1997) Hopes for the future: restoration ecology and conservation biology. Science 277:515–522

    Article  CAS  Google Scholar 

  • Doidy J (2012) The Medicago truncatula sucrose transporter family: sugar transport from plant source leaves towards the arbuscular mycorrhizal fungus. Doctoral dissertation, Université de Bourgogne

    Google Scholar 

  • Ensley BD, Raskin I, Salt DE (1997) Phytoremediation applications for removing heavy metal contamination from soil and water. In: Biotechnology in the sustainable environment. Springer, pp 59–64

    Google Scholar 

  • Hellmers H, Horton JS, Juhren G, O’keefe J (1955) Root systems of some chaparral plants in southern California. Ecology 36(4):667–678

    Article  Google Scholar 

  • Hinchman RR, Negri MC, Gatliff EG (1996) Phytoremediation: using green plants to clean up contaminated soil, groundwater and wastewater. Proc Int Top Meet Nucl Hazard Waste Manag Spectr 96:1–13

    Google Scholar 

  • Indelicato A (2014) The use of plants and wildflowers as bioremediation for contaminated soils in the Hong-Kong SAR. Open J Soil Sci 4:305

    Article  CAS  Google Scholar 

  • Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8(6):921–928

    CAS  Google Scholar 

  • Lasat MM (2000) The use of plants for the removal of toxic metals from contaminated soils

    Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40(4):923–940

    Article  CAS  Google Scholar 

  • Moqsud MA, Omine K (2013) Bioremediation of agricultural land damaged by tsunami. In: Biodegradation of hazardous and special products. In Tech

    Google Scholar 

  • Morikawa H, Erkin ÖC (2003) Basic processes in phytoremediation and some applications to air pollution control. Chemosphere 52:1553–1558

    Article  CAS  Google Scholar 

  • Neilson S, Rajakaruna N (2015) Phytoremediation of agricultural soils: using plants to clean metal-contaminated arable land. In: Phytoremediation. Springer, pp 159–168

    Google Scholar 

  • Newman L, Gordon MP, Heilman P, Cannon DL, Lory E, Miller K, Osgood J, Strand SE (1999) Phytoremediation of MTBE at a California naval site. In: Soil Groundwater Cleanup,. (February/March), pp 42–45

    Google Scholar 

  • Oh K, Cao T, Li T, Cheng H (2014) Study on application of phytoremediation technology in management and remediation of contaminated soils. J Clean EnerTechnol 2:216–220

    CAS  Google Scholar 

  • Ouyang Y (2002) Phytoremediation: modeling plant uptake and contaminant transport in the soil–plant–atmosphere continuum. J Hydrol 266(1–2):66–82

    Article  CAS  Google Scholar 

  • Paz-Alberto AM, Sigua GC (2013) Phytoremediation: a green technology to remove environmental pollutants. Am J Clim Chang 2:71

    Article  Google Scholar 

  • Pinior A, Grunewaldt Stöcker G, von Alten H, trasser RJ (2005) Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Mycorrhiza 15:596

    Article  CAS  Google Scholar 

  • Robinson B, Green S, Mills T, Clothier B, vander Velde M, Laplane R, Fung L, Deurer M, Hurst S, Thayalaku maran T (2003) Phytoremediation: using plants as bio-pumps to improve degraded environments. Soil Res 41:599–611

    Article  Google Scholar 

  • Rodriguez RJ, Redman RS, Henson JM (2004) The role of fungal symbioses in the adaptation of plants to high stress environments. Miti Adapt Strate Global Chang 9:261–272

    Article  Google Scholar 

  • Salido AL, Hasty KL, Lim JM, Butcher DJ (2003) Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int J Phytoremediation 5:89–103

    Article  CAS  Google Scholar 

  • Schellenbaum L, Müller J, Boller T, Wiemken A, Schüepp H (1998) Effects of drought on non-mycorrhizal and mycorrhizal maize: changes in the pools of non-structural carbohydrates, in the activities of invertase and trehalase, and in the pools of amino acids and imino acids. New Phytol 138(1):59–66

    Article  CAS  Google Scholar 

  • Schwitzguébel JP, Comino E, Plata N, Khalvati M (2011) Is phytoremediation a sustainable and reliable approach to clean-up contaminated water and soil in alpine areas. Environ Sci Pollut Res 18:842–856

    Article  Google Scholar 

  • Sharma N, Yadav K, Cheema J, Badda N, Aggarwal A (2015) Arbuscular mycorrhizal symbiosis and water stress: a critical review. Pertanika J Trop Agr Sci 38:427–453

    Google Scholar 

  • Sinclair SA, Krämer U (2012) The zinc homeostasis network of land plants. Molec Cell Res 1823:1553–1567

    CAS  Google Scholar 

  • Singh R, Upadhyay AK, Singh DP (2018) Regulation of oxidative stress and mineral nutrient status by selenium in arsenic treated crop plant Oryza sativa. Ecotoxicol Environ Saf 148:105–113

    Article  CAS  Google Scholar 

  • Smith S, Read D (2008) Colonization of roots and anatomy of arbuscular mycorrhiza. Mycorrhizal Symbiosis. Academic Press, London, pp 42–90

    Google Scholar 

  • Stanković DM, Devetaković JR (2016) Application of plants in remediation of contaminated sites. Reforesta 1:300–320

    Article  Google Scholar 

  • Suresh B, Ravishankar GA (2004) Phytoremediation a novel and promising approach for environmental cleanup. Crit Rev Biotechnol 24:97–124

    Article  CAS  Google Scholar 

  • Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, pb and hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:31

    Article  Google Scholar 

  • Tian S, Nakamura K, Kayahara H (2004) Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice. J Agric Food Chem 52(15), 4808–4813

    Article  CAS  Google Scholar 

  • Truong P (2000) The global impact of vetiver grass technology on the environment. In: Proceedings of the Second International Conference on Vetiver. Office of the Royal Development Projects Board Bangkok, pp 48–61

    Google Scholar 

  • Truong P, Baker D (1998) Vetiver grass system for environmental protection, volume 2004: Bangkok, Thailand, pacific rim vetiver network, office of the royal development projects board. Retrieved 29

    Google Scholar 

  • U. S. Environmental Protection Agency (2000) Introduction to Phytoremediation. National Risk Management Research Laboratory, EPA/600/R-99/107, http://www.cluin.org/download/remed/introphyto.pdf

  • Upadhyay AK, Singh R, Singh DP (2019) Phycotechnological approaches toward wastewater management. In: Emerging and eco-friendly approaches for waste management. Springer, Singapore, pp 423–435

    Google Scholar 

  • Vara Prasad MN, de Oliveira Freitas HM (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:285–321

    Google Scholar 

  • Vishnoi SR, Srivastava P (2007) Phytoremediation green for environmental clean. In: Proceedings of Taal: the 12th world lake conference 1016, p 1021

    Google Scholar 

  • Wang X, Li F, Okazaki M, Sugisaki M (2003) Phytoremediation of contaminated soil. Annual Report CESS 3:114–123

    Google Scholar 

  • Wu QS, Zou YN (2017) Arbuscular mycorrhizal fungi and tolerance of drought stress in plants. In: Arbuscular mycorrhizas and stress tolerance of plants. Springer, pp 25–41

    Google Scholar 

  • Yadav A, Mishra S, Kaithwas G, Raj A, Bharagava RN (2016) Organic pollutants and pathogenic bacteria in tannery wastewater and their removal strategies. In: Singh JS, Singh DP (eds) Microbes and environmental management. Studium Press (India), New Delhi, pp 101–127

    Google Scholar 

  • Yadav A, Chowdhary P, Kaithwas G, Bharagava RN (2017) Toxic metals in environment, threats on ecosystem and bioremediation approaches. (ISBN 9781498762427). In: Das S, Singh HR (eds) Handbook of metal-microbe interactions and bioremediation. CRC Press, Taylor & Francis Group, Boca Raton, pp 128–141

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bimal K. Chetri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chetri, B.K. (2020). Phytoremediation: Role of Mycorrhiza in Plant Responses to Stress. In: Upadhyay, A., Singh, R., Singh, D. (eds) Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-7665-8_9

Download citation

Publish with us

Policies and ethics