Skip to main content

Comparative Genomic Analyses of Lactic Acid Bacteria

  • Chapter
  • First Online:
Lactic Acid Bacteria
  • 1124 Accesses

  • The original version of the chapter has been revised: Pages 79, 82 and 87 was published with some errors which has been corrected now. A correction to this chapter can be found at https://doi.org/10.1007/978-981-13-7832-4_12

Abstract

Genetic diversity is the sum of the genetic variation between different species and within the same population. The genetic information of an organism is stored in the DNA sequences of chromosomes and organelle genomes. Lactobacillus keeps its traits stable by accurately duplicating its DNA and passing on the genetic information generation by generation. However, many factors can affect the accuracy of DNA replication, including external factors and internal factors, which together lead to different levels of genetic variation. These accumulated genetic variations enrich the genetic diversity. Genetic polymorphism is not only the result of evolution, but also the premise of evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 06 October 2022

    The original version of the book was inadvertently published with errors. The following corrections have been made after the original publication.

References

  • Adıguzel GC et al (2009) Phenotypic and genotypic characterization of lactic acid bacteria isolated from Turkish dry fermented sausage. Rom Biotechnol Lett 14:4130–4138

    Google Scholar 

  • Bakker HCD, Didelot X, Fortes ED, Nightingale KK, Wiedmann M (2007) Lineage specific recombination rates and microevolution in Listeria monocytogenes. BMC Evol Biol 8(1649):277

    Google Scholar 

  • Bokulich NA, Mills DA (2012) Differentiation of mixed lactic acid bacteria communities in beverage fermentations using targeted terminal restriction fragment length polymorphism. Food Microbiol 31(1):126–132

    Article  CAS  PubMed  Google Scholar 

  • Boyd DA, Cabral T, Van Caeseele P, Wylie J, Mulvey MR (2002) Molecular characterization of the vanE gene cluster in vancomycin-resistant Enterococcus faecalis N00-410 isolated in Canada. Antimicrob Agents Chemother 46(6):1977–1979

    Google Scholar 

  • Bottacini F et al (2010) Comparative genomics of the genus Bifidobacterium. Microbiology 156:113243–113254

    Article  Google Scholar 

  • Bruyne KD, Camu N, Vuyst LD, Vandamme P (2009) Weissella fabaria sp. nov., from a Ghanaian cocoa fermentation. Int J Syst Evol Microbiol 60(Pt 9):1999–2005

    PubMed  Google Scholar 

  • Cai H et al (2007) Genotypic and phenotypic characterization of Lactobacillus casei strains isolated from different ecological niches suggests frequent recombination and niche specificity. Microbiology 153(8):2655–2665

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Thompson R, Budinich MF, Broadbent JR, Steele JL (2009a) Genome sequence and comparative genome analysis of Lactobacillus casei: insights into their niche-associated evolution. Genome Biol Evol 1(1):239–257

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai H, Thompson R, Budinich MF, Broadbent JR, Steele JL (2009b) Genome Sequence and Comparative Genome Analysis of Lactobacillus casei: Insights into Their Niche-Associated Evolution. Genome Biol Evol 1:239–257

    Article  PubMed  PubMed Central  Google Scholar 

  • Calmin G, Lefort F, Belbahri L (2008) Multi-Loci Sequence Typing (MLST) for Two Lacto-Acid Bacteria (LAB) Species: Pediococcus parvulus and P. damnosus. Mol Biotechnol 40(2):170–179

    Article  CAS  PubMed  Google Scholar 

  • Chiou CS et al (2010) Development and evaluation of multilocus variable number tandem repeat analysis for fine typing and phylogenetic analysis of Salmonella enterica serovar Typhimurium. Int J Food Microbiol 142(1–2):67–73

    Article  CAS  PubMed  Google Scholar 

  • Core JR et al (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(Database issue):141–145

    Google Scholar 

  • Dan T et al (2014) A novel multi-locus sequence typing (MLST) protocol for Leuconostoc lactisisolates from traditional dairy products in China and Mongolia. BMC Microbiol 14

    Google Scholar 

  • De las Rivas B et al (2004) Allelic diversity and population structure in Oenococcus oeni as determined from sequence analysis of housekeeping genes. Appl Environ Microbiol 70(12):7210–7219

    Article  Google Scholar 

  • De LRB, Marcobal A, Muñoz R (2005) Allelic diversity and population structure in Oenococcus oeni as determined from sequence analysis of housekeeping genes. Appl Environ Microbiol 70(12):7210–7219

    Google Scholar 

  • De Urraza PJ et al (2000) DNA fingerprinting of thermophilic lactic acid bacteria using repetitive sequence-based polymerase chain reaction. J Dairy Res 67(3):381–392

    Article  PubMed  Google Scholar 

  • Delorme C et al (2009) Emergence of a cell wall protease in the Streptococcus thermophilus population. Appl Environ Microbiol 76(2):451–460

    Article  PubMed  PubMed Central  Google Scholar 

  • Diancourt L et al (2007) multilocus sequence typing of lactobacillus casei reveals a clonal population structure with low levels of homologous recombination. Appl Environ Microbiol 73(20):6601–6611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitrov ZP et al (2008) Comparative evaluation of three molecular typing methods in their applicability to differentiateLactobacillusstrains with human origin. World J Microbiol Biotechnol 24(8):1305–1312

    Article  CAS  Google Scholar 

  • Doria F et al (2013) Development of a new method for detection and identification of Oenococcus oeni bacteriophages based on endolysin gene sequence and randomly amplified polymorphic DNA. Appl Environ Microbiol 79(16):4799–4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrmann MA, Preissler P, Danne M, Vogel RF (2009) Lactobacillus paucivorans sp. nov., isolated from a brewery environment. Int J Syst Evol Microbiol 60(Pt 10):2353–2357

    PubMed  Google Scholar 

  • Gao XY et al (2014) Comparative genomics of the bacterial genus Streptococcus illuminates evolutionary implications of species groups. PLoS One 9(6):e101229

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao Y (2013) Isolate and genetic analysis of psychrotrophic lactic acid bacteria from the intestinal tract of cold-water fishes from Xinjiang. (Doctoral dissertation, Shi he zi University)

    Google Scholar 

  • Gonzalez-Arenzana L, Santamaria P, Lopez R, Lopez-Alfaro I (2014) Oenococcus oeni strain typification by combination of multilocus sequence typing and pulsed field gel electrophoresis analysis. Food Microbiol 38:295–302

    Article  CAS  PubMed  Google Scholar 

  • Hidron AI, Edwards JR, Patel J (2009) Antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007 (vol 29, pg 996, 2008). Infect Control Hosp Epidemiol 30(1)

    Google Scholar 

  • Holzapfel WH, Haberer P, Geisen R, Björkroth J, Schillinger U (2001) Taxonomy and important features of probiotic microorganisms in food and nutrition. Am J Clin Nutr 73(Suppl 2):365S–373S

    Article  CAS  PubMed  Google Scholar 

  • Konstantinidis KT, Ramette A, ¶, & Tiedje JM (2006) Toward a more robust assessment of intraspecies diversity, using fewer genetic markers. Appl Environ Microbiol 72(11):7286-7293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leavis HL, Bonten MJM, Willems RJL (2006) Identification of high-risk enterococcal clonal complexes: global dispersion and antibiotic resistance. Curr Opin Microbiol 9(5):454–460

    Article  CAS  PubMed  Google Scholar 

  • Leavis HL et al (2007) Insertion sequence-driven diversification creates a globally dispersed emerging multiresistant subspecies of E-faecium. PLoS Pathog 3(1):75–96

    Article  CAS  Google Scholar 

  • Lefebure T, Stanhope MJ (2007) Evolution of the core and pan-genome of Strepococcus: positive selection, recombination, and genome composition. Genome Biol 8(5)

    Google Scholar 

  • Li R et al (2009) SNP detection for massively parallel whole-genome resequencing. Genome Res 19(6):545–552

    Article  Google Scholar 

  • Lukjancenko O, Ussery DW, Wassenaar TM (2012) Comparative genomics of Bifidobacterium, Lactobacillus and related probiotic genera. Microb Ecol 63(3):651–673

    Article  CAS  PubMed  Google Scholar 

  • Maiden MC et al (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci 95(6):3140–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiden MC et al (2013) MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol 11(10):728–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova KS, Koonin EV (2007) Evolutionary genomics of lactic acid bacteria. J Bacteriol 189(4):1199–1208

    Article  CAS  PubMed  Google Scholar 

  • Makarova K et al (2006a) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103(42):15611–15616

    Article  PubMed  PubMed Central  Google Scholar 

  • Makarova K et al (2006b) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103(42):15611–15616

    Article  PubMed  PubMed Central  Google Scholar 

  • Marco ML, Pavan S, Kleerebezem M (2006) Towards understanding molecular modes of probiotic action. Curr Opin Biotechnol 17(2):204–210

    Article  CAS  PubMed  Google Scholar 

  • Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15(6):589–594

    Article  CAS  PubMed  Google Scholar 

  • O'Hara AM, Shanahan F (2007) Mechanisms of action of probiotics in intestinal diseases. TheScientificWorldJOURNAL 7:31–46

    Article  CAS  PubMed  Google Scholar 

  • Olsen GJ, Larsen N, Woese CR (1991) The ribosomal RNA database project. Nucleic Acids Res 19(Suppl):2017–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picozzi C, Bonacina G, Vigentini L (2010) Genetic diversity in Italian Lactobacillus sanfranciscensis strains assessed by multilocus sequence typing and pulsed-field gel electrophoresis analyses. Microbiology 156(Pt 7):2035–2045

    Article  CAS  PubMed  Google Scholar 

  • Pothakos V, Snauwaert C, De Vos P, Huys G, Devlieghere F (2014) Psychrotrophic members of Leuconostoc gasicomitatum, Leuconostoc gelidum and Lactococcus piscium dominate at the end of shelf-life in packaged and chilled-stored food products in Belgium. Food Microbiol 39:61–67

    Article  CAS  PubMed  Google Scholar 

  • Poyart C, Quesne G, Trieu-Cuot P (2002) Taxonomic dissection of the Streptococcus bovis group by analysis of manganese-dependent superoxide dismutase gene (sodA) sequences: reclassification of ‘Streptococcus infantarius subsp. coli’ as Streptococcus lutetiensis sp. nov. and of Streptococcus bovi. Int J Syst Evol Microbiol 52(4):1247–1255

    Google Scholar 

  • Psoni L et al (2007) Genotypic and phenotypic diversity of Lactococcus lactis isolates from Batzos, a Greek PDO raw goat milk cheese. Int J Food Microbiol 114(2):211–220

    Article  CAS  PubMed  Google Scholar 

  • Qin X et al (2012) Complete genome sequence of Enterococcus faecium strain TX16 and comparative genomic analysis of Enterococcus faecium genomes. BMC Microbiol 12

    Google Scholar 

  • Rasmussen TB et al (2008) Streptococcus thermophilus core genome: Comparative genome hybridization study of 47 strains. Appl Environ Microbiol 74(15):4703–4710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawadogo-Lingani H et al (2007) The biodiversity of predominant lactic acid bacteria in dolo and pito wort for the production of sorghum beer. J Appl Microbiol 103(4):765–777

    Article  CAS  PubMed  Google Scholar 

  • Schillinger U, Endo A (2014) Lactic acid bacteria: biodiversity and taxonomy, pp 159–170

    Google Scholar 

  • Schlegel L et al (2000) Streptococcus infantarius sp. nov., Streptococcus infantarius subsp. infantarius subsp. nov. and Streptococcus infantarius subsp. coli subsp. nov., isolated from humans and food. Int J Syst Evol Microbiol 50(4):1425–1434

    Article  CAS  PubMed  Google Scholar 

  • Siezen RJ et al (2008) Genome-scale genotype-phenotype matching of two Lactococcus lactis isolates from plants identifies mechanisms of adaptation to the plant niche. Appl Environ Microbiol 74(2):424–436

    Article  CAS  PubMed  Google Scholar 

  • Siezen RJ et al (2010) Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environ Microbiol 12(3):758–773

    Article  CAS  PubMed  Google Scholar 

  • Smokvina T et al (2013) Lactobacillus paracasei comparative genomics: towards species pan-genome definition and exploitation of diversity. PLoS One 8(7)

    Google Scholar 

  • Solieri L, Giudici P (2010) Development of a sequence-characterized amplified region marker-targeted quantitative PCR assay for strain-specific detection of Oenococcus oeni during wine malolactic fermentation. Appl Environ Microbiol 76(23):7765–7774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y et al (2015) Microevolution of lactic acid bacteria - A review. Acta Microbiol Sin 55(11):1371–1377

    Google Scholar 

  • Stackebrandt E et al (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52(3):1043–1047

    CAS  PubMed  Google Scholar 

  • Sun T (2006) Identification of Lactobacillus Isolated from Koumiss by 16S-23S rDNA Intergenic DNA Sequence Comparisons. Food Fermentation Ind 32(9):1–4

    CAS  Google Scholar 

  • Sun Zhihong (2014) Genomic polymorphism of the genus Lactobacillus and microevolution of Lactobacillus delbrueckii subsp. bulgaricus. (Doctoral dissertation, Inner Mongolia Agricultural University)

    Google Scholar 

  • Sun Z et al (2015) Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat Commun 6

    Google Scholar 

  • Tanganurat W, Quinquis B, Leelawatcharamas V, Bolotin A (2009) Genotypic and phenotypic characterization of Lactobacillus plantarum strains isolated from Thai fermented fruits and vegetables. J Basic Microbiol 49(4):377–385

    Article  CAS  PubMed  Google Scholar 

  • Tanigawa K, Watanabe K (2011) Multilocus sequence typing reveals a novel subspeciation of Lactobacillus delbrueckii. Microbiology 157(3):727–738

    Article  CAS  PubMed  Google Scholar 

  • Taylor JW, Geiser DM, Burt A, Koufopanou V (1999) The evolutionary biology and population genetics underlying fungal strain typing. Clin Microbiol Rev 12(1):126–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tettelin H et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 102(39):13950–13955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong D et al (2013) A novel multi-locus sequence typing (MLST) protocol for Leuconostoc lactis isolates from traditional dairy products in China and Mongolia. BMC Microbiol 14(1):1–9

    Google Scholar 

  • Ventura M et al (2007) Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylura. Microbiol Mol Biol Rev 71(3):495–49+

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ventura M et al (2009a) Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat Rev Microbiol 7(1):61–U77

    Article  CAS  PubMed  Google Scholar 

  • Ventura M et al (2009b) The Bifidobacterium dentium Bd1 Genome Sequence Reflects Its Genetic Adaptation to the Human Oral Cavity. PLoS Genet 5(12)

    Google Scholar 

  • Vesth T et al (2010) On the origins of a Vibrio species. Microb Ecol 59:11–13

    Article  Google Scholar 

  • Wang Y (2012) Genome-based insights into the evolution and function of Enterococcus faecium. (Doctoral dissertation, Shanghai Jiao Tong Unverisity)

    Google Scholar 

  • Wei Y (2012) Studies on genome and funvtional genes of Bifidobacterium longum JDM301. (Doctoral dissertation, Shanghai Jiao Tong Unverisity)

    Google Scholar 

  • Willems RJL, van Schaik W (2009) Transition of Enterococcus faecium from commensal organism to nosocomial pathogen. Future Microbiol 4(9):1125–1135

    Article  PubMed  Google Scholar 

  • Willems RJL, Hanage WP, Bessen DE, Feil EJ (2011) Population biology of Gram-positive pathogens: high-risk clones for dissemination of antibiotic resistance. FEMS Microbiol Rev 35(5):872–900

    Article  CAS  PubMed  Google Scholar 

  • Yang J (2013) Phenotypic, genotypic and probiotic characterization of lactic acid bacteria isolated from Chinese yak milk cheeses. (Doctoral dissertation, Southwest University)

    Google Scholar 

  • Yu J (2013) Multiocus sequence typing of Streptococcus thermophiles from traditional fermented dairy products in China, Russia and Mongolia. (Doctoral dissertation, Inner Mongolia Agricultural University)

    Google Scholar 

  • Yu J et al (2011) Phenotypic and genotypic characteristics of lactic acid bacteria isolated from sour congee in Inner Mongolia of China. J Gen Appl Microbiol 57(4):197–206

    Article  CAS  PubMed  Google Scholar 

  • Yu J et al (2012) Phylogenetic study of Lactobacillus acidophilus group, L. casei group and L. plantarum group based on partial hsp 60, phe S and tuf gene sequences. Eur Food Res Technol 234(6):927–934

    Article  CAS  Google Scholar 

  • Zeigler DR (2003) Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53(6):1893–1900

    Article  CAS  PubMed  Google Scholar 

  • Zheng H (2010) Genomic analysis of Lactobacillus delbrueckii subsp.bulgaricus strain 2038. (Doctoral dissertation, Fudan University)

    Google Scholar 

  • Zhong Z (2015) Comparative genomic analysis of the type strains of genus Enterococcus and multilocus sequence typing of Enterococcus faecalis isolated from fermented foods. (Doctoral dissertation, Inner Mongolia Agricultural University)

    Google Scholar 

  • Zhou Ning et al (2012) Advances in molecular approaches and their applications in lactic acid bacteria. Sci Technol Food Ind (5):69–73

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Chen or Hongchao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, W., Wang, H. (2019). Comparative Genomic Analyses of Lactic Acid Bacteria. In: Chen, W. (eds) Lactic Acid Bacteria. Springer, Singapore. https://doi.org/10.1007/978-981-13-7832-4_3

Download citation

Publish with us

Policies and ethics