Skip to main content

Diversity of Iron and Sulphur Oxidizers in Sulphide Mine Leachates

  • Chapter
  • First Online:
Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications

Abstract

Mining of metals and fuel is inevitable, as we need both these minerals for development. Mining process exposes a large surface area of minerals to air and water, which enhances chemical oxidation of ferrous and reduced sulphur compounds that results in generation of protons. Thiobacillus and Thiomonas initiate their activity at neutral pH, leading further acidification of environment and pH reduction to 5.0. At this stage, acidophilic sulphur and iron-oxidizing organisms accelerate the process, and pH falls below 3.0 and many a time, it reaches even lower than 1.0. Acidophilic iron and reduced sulphur-oxidizing organisms are versatile and found in all the three microbial domains. They use inorganic or organic substrates as electron donor; some of them use both iron and sulphur as a source of energy. In terms of optimum temperature for growth, they are mesophilic, thermophilic, extremely thermophilic and psychrotolerant. Biooxidation of iron and reduction of sulphur compounds form acid mine drainage and pollute several thousands of miles of water streams globally. The formed acid mine drainage dissolves several metals and other materials resulting in the formation of metal-loaded acidic turbid polluted waters. If the organisms responsible for acid mine drainage are used scientifically, they are helpful for metal extractions from mining waste, ores, concentrates, e-waste and municipal solid waste. The activity of iron-oxidizing organisms is also used for bioremediation of iron from acidic water and production of yellow/brown pigments. Till now diversity of a few microbes is known; therefore, further work is needed to explore them for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler RA, Claassen M, Godfrey L, Turton AR (2007) Water, mining, and waste: an historical and economic perspective on conflict management in South Africa. Eco Peace Secur J 2:33–44

    Google Scholar 

  • Aguilera A, Olsson S, Puente-Sanchez F (2016) Physiological and phylogenetic diversity of acidophilic eukaryotes. In: Quatrini R, Johnson DB (eds) Acidophiles: life in extremely acidic environments. Caister Academic Press, Poole, pp 107–118

    Chapter  Google Scholar 

  • Aliaga Goltsman DS, Dasari M, Thomas BC, Shah MB, Ver Berkmoes NC, Hettich RL, Banfield JF (2013) New group in the Leptospirillum clade: cultivation-independent community genomics, proteomics, and transcriptomics of the new species “Leptospirillum group IV UBA BS”. Appl Environ Microbiol 79:5384–5393

    Article  CAS  Google Scholar 

  • Auld RR, Myre M, Mykytczuk NCS, Leduc LG, Merritt TJS (2013) Characterization of the microbial acid mine drainage microbial community using culturing and direct sequencing techniques. J Microbiol Methods 93:108–115

    Article  CAS  PubMed  Google Scholar 

  • Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152

    Article  CAS  PubMed  Google Scholar 

  • Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171

    Article  CAS  PubMed  Google Scholar 

  • Bosecker K, Mengel-Jung G, Schippers A (2004) In: Tsezos M, Hatzikioseyian A, Remoundaki E (eds) Biohydrometallurgy: in a sustainable technology in evolution, part 1. University of Athens, Zografou, pp 585–593

    Google Scholar 

  • Breuker A, Blazejak A, Bosecker K, Schippers A (2009) Diversity of iron oxidizing bacteria from various sulfidic mine waste dumps. Adv Mater Res 71-73:47–50

    Article  CAS  Google Scholar 

  • Brierley CL, Brierley JA (2002) Microbiology of the metal mining industry. In: Hurst C, Crawford R, Knudsen G, McInerney M, Stetzenbach L (eds) Manual of environmental microbiology. ASM Press, Washington DC, pp 1057–1071

    Google Scholar 

  • Cardenas JP, Quatrini R, Holmes DS (2016) Genomic and metagenomic challenges and opportunities for bioleaching: a mini-review. Res Microbiol 167:529–538

    Article  CAS  PubMed  Google Scholar 

  • Chauhan G, Jadhao PR, Pant KK, Nigam KDP (2018) Novel technologies and conventional processes for recovery of metals from waste electrical and electronic equipment: challenges & opportunities – a review. J Environ Chem Eng 6:1288–1304

    Article  CAS  Google Scholar 

  • Cho JC, Tiedje JM (2001) Bacterial species determination from DNA–DNA hybridization by using genome fragments and DNA microarrays. Appl Environ Microbiol 67:3677–3682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Classen AT, Boyle SI, Haskins KE, Overby ST, Hart SC (2003) Community-level physiological profiles of bacteria and fungi: plate type and incubation temperature influences on contrasting soils. FEMS Microbiol Ecol 44:319–328

    Article  CAS  PubMed  Google Scholar 

  • Coil D, McKittrick E, Mattox A (2010) Acid mine drainage. http://www.groundtruthtrekking.org/Issues/MetalsMining/AcidMineDrainage.htm. Accessed on 17 Sept 2018

  • Coram NJ, Rawlings DE (2002) Molecular relationship between two groups of Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates south African commercial biooxidation tanks which operate at 40°C. Appl Environ Microbiol 68:838–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dave SR, Tipre DR (2011) Chapter 6: bioleaching of metals from sulphidic minerals. In: Garg SR (ed) Environmental security, human and animal health. IBDC Publishers, Lucknow, pp 71–94

    Google Scholar 

  • Dave SR, Tipre DR (2012) Chapter 32: coal mine drainage pollution and its remediation. In: Satyanarayana T, Johri BN, Prakash A (eds) Microorganisms in environmental management: microbes and environment. Springer Science, New York, pp 719–743

    Chapter  Google Scholar 

  • Dave SR, Sodha AB, Tipre DR (2018) Microbial technology for metal recovery from e-waste printed circuit boards. J Bacteriol Mycol Open Access 6:241–247

    Google Scholar 

  • Denef VJ, Mueller RS, Banfield JF (2010) AMD biofilms: using model communities to study microbial evolution and ecological complexity in nature. ISME J 4:599–610

    Article  PubMed  Google Scholar 

  • Ding J, Zhang R, Yu Y, Jin D, Liang C, Yi Y, Zhu W, Xia J (2011) A novel acidophilic, thermophilic iron and sulfur-oxidizing archaeon isolated from a hot spring of Tengchong, Yunnan, China. Brazilian J Microbiol 42:514–525

    Article  CAS  Google Scholar 

  • Dong Y, Lin H, Xu X, Zhou S (2013) Bioleaching of different copper sulfides by Acidithiobacillus ferrooxidans and its adsorption on minerals. Hydrometallurgy 140:42–47

    Article  CAS  Google Scholar 

  • Dopson M (2016) Physiological and phylogenetic diversity of acidophilic bacteria. In: Quatrini R, Johnson DB (eds) Acidophiles: life in extremely acidic environments. Caister Academic Press, Poole, pp 79–92

    Chapter  Google Scholar 

  • Druschel GK, Baker BJ, Gihring TM, Banfield JF (2004) Acid mine drainage biogeochemistry at Iron Mountain, California. Geochem Trans 5:13. https://doi.org/10.1186/1467-4866-5-13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ekkers DM, Cretoiu MS, Kielak AM, Elsas JD (2012) The great screen anomaly – a new frontier in product discovery through functional metagenomics. Appl Microbiol Biotechnol 93:1005–1020

    Article  CAS  PubMed  Google Scholar 

  • Emerson D, Fleming EJ, McBeth JM (2010) Iron-oxidizing bacteria: an environmental and genomic perspective. Ann Rev Microbiol 64:561–583

    Article  CAS  Google Scholar 

  • Foucher S, Battaglia-Brunet F, d’Hugues P, Clarens M, Godon JJ, Morin D (2003) Evolution of the bacterial population during the batch bioleaching of a cobaltiferous pyrite in a suspended-solids bubble column, and comparison with a mechanically-agitated reactor. Hydrometallurgy 71:5–12

    Article  CAS  Google Scholar 

  • Garland JL (1996) Patterns of potential C source utilization by rhizosphere communities. Soil Biol Biochem 28:223–230

    Article  CAS  Google Scholar 

  • Gehrke T, Telegdi J, Thierry D, Sand W (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64:2743–2747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goebel BM, Stackebrandt E (1994) Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ Microbiol 60:1614–1621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Golyshina OV, Pivovarova TA, Karavaiko GI, Kondrat’eva TF, Moore ERB, Abraham WR, Lunsdorf H, Timmis KN, Yakimov MM, Golyshin PN (2000) Ferroplasma acidiphilum gen. Nov., sp. nov., an acidophilic, autotrophic, ferrous iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmacaea fam. Nov., comprising a distinct lineage of the archaea. Int J Syst Evol Microbiol 50:997–1006

    Article  CAS  PubMed  Google Scholar 

  • Golyshina OV, Ferrer M, Golyshin PN (2016) Diversity and physiologies of acidophilic archaea. In: Quatrini R, Johnson DB (eds) Acidophiles: life in extremely acidic environments. Caister Academic Press, Poole, pp 93–106

    Chapter  Google Scholar 

  • Greene EA, Voordouw G (2003) Analysis of environmental microbial communities by reverse sample genome probing. J Microbiol Methods 53:211–219

    Article  CAS  PubMed  Google Scholar 

  • Hallberg KB, Lindström EB (1994) Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology 140:3451–3456

    Article  CAS  PubMed  Google Scholar 

  • Harrison STL (2016) Biotechnologies that utilise acidophiles. In: Quatrini R, Johnson DB (eds) Acidophiles: life in extremely acidic environments. Caister Academic Press, Poole, pp 265–284

    Chapter  Google Scholar 

  • Harrison AP Jr (1981) Acidiphilium cryptum gen. Nov., sp. nov., heterotrophic bacterium from acidic mineral environments. Int J Syst Bacteriol 31:327–332

    Article  Google Scholar 

  • Hippe H (2000) Leptospirillum gen. Nov. (ex Markosyan 1972), nom. Rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. Rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992). Int J Syst Evol Microbiol 50:501–503

    Article  PubMed  Google Scholar 

  • Johnson DB (2008) Biodiversity and interactions of acidophiles: key to understanding and optimizing microbial processing of ores and concentrates. T Nonferr Metal Soc 18:1367–1373

    Article  CAS  Google Scholar 

  • Johnson DB (2014) Biomining- biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotechnol 30:24–31

    Article  CAS  PubMed  Google Scholar 

  • Johnson DB (2016) Microbial communities and interactions in low pH environments. In: Quatrini R, Johnson DB (eds) Acidophiles: life in extremely acidic environments. Caister Academic Press, Poole, pp 121–138

    Chapter  Google Scholar 

  • Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154:466–473

    Article  CAS  PubMed  Google Scholar 

  • Johnson DB, Quatrini R (2016) Acidophile microbiology in space and time. In: Quatrini R, Johnson DB (eds) Acidophiles: life in extremely acidic environments. Caister Academic Press, Poole, pp 3–16

    Chapter  Google Scholar 

  • Jones DS, Albrecht HL, Dawson KS, Schaperdoth I, Freeman KH, Pi Y, Pearson A, Macalady JL (2012) Community genomic analysis of an extremely acidophilic Sulphur-oxidizing biofilm. ISME J 6:158–170

    Article  CAS  PubMed  Google Scholar 

  • Kamika I, Momba MNB (2014) Microbial diversity of Emalahleni mine water in South Africa and tolerance ability of the predominant organism to vanadium and nickel. PLoS One 9:e86189. https://doi.org/10.1371/journal.pone.0086189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur H, Girdhar M, Mohan A (2018) Acids mine drainage: an introduction and treatment strategies. Pollut Res 37:82–90

    Google Scholar 

  • Kelly BC, Tuovinen OH (1988) Microbial oxidation of minerals in mine tailings. In: Salomons W, Forstner U (eds) Chemistry and biology of solid waste: dredged material and mine tailings. Springer, Berlin, pp 33–53

    Chapter  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188

    Article  CAS  PubMed  Google Scholar 

  • Leduc D, Leduc LG, Ferroni GD (2002) Quantification of bacterial populations indigenous to acidic drainage streams. Water Air Soil Pollut 6:1–21

    Article  Google Scholar 

  • Liu Y, Yin H, Liang Y, Shen L, Liu Y (2011) Changes in the composition of an acid mine drainage microbial community upon successive transfers in medium containing low-grade copper sulfide. Bioresour Technol 102:9388–9394

    Article  CAS  PubMed  Google Scholar 

  • Lohr AJ, Bogaard TA, Heikens A, Hendriks MR, Sumarti S, Van Bergen MJ, Van Gestel CA, Van Straalen NM, Vroon PZ, Widianarko B (2005) Natural pollution caused by the extremely acidic crater Lake Kawah Ijen, East Java, Indonesia. Environ Sci Pollut Res Int 12:89–95

    Article  CAS  PubMed  Google Scholar 

  • Macalady JL, Hamilton TL, Grettenberger CL, Jones DS, Tsao LE, Burgos WD (2013) Energy, ecology and the distribution of microbial life. Phil Trans R Soc B 368:20120383

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Markosyan GE (1972) A new iron-oxidizing bacterium Leptospirillum ferrooxidans gen. sp. nov. Biol Zh Arm 25: 26 (in Russian)

    Google Scholar 

  • Méndez-García C, Peláez AL, Mesa V, Sánchez J, Golyshina OV, Ferrer M (2015) Microbial diversity and metabolic networks in acid mine drainage habitats. Front Micrbiol 6:475

    Google Scholar 

  • Murphy JE (2017) Catalytic Effect of Iron Oxidizing Bacteria on the Production of Pigment from Acid Mine Drainage. Master’s Degree Thesis, The Russ College of Engineering and Technology of Ohio University, USA

    Google Scholar 

  • Norris PR (1997) Thermophiles and bioleaching. In: Rawlings DE (ed) Biomining: theory, microbes and industrial processes. Springer-Verlag, Berlin, pp 247–258

    Chapter  Google Scholar 

  • Norris PR, Burton NP, Foulis AM (2000) Acidophiles in bioreactor mineral processing. Extremophiles 4:71–76

    Article  CAS  PubMed  Google Scholar 

  • Oelofse S (2009) Mine water pollution–acid mine decant, effluent and treatment: a consideration of key emerging issues that may impact the state of the environment. In: Krishna CS (ed) Mining: environment and health concerns. Icfai University Press, Hyderabad, pp 84–91

    Google Scholar 

  • Patel M, Tipre D, Dave S (2009) Microbial diversity by substrate utilization profiles of lignite mines samples of Gujarat, India. Adv Mater Res 71–73:101–104

    Article  Google Scholar 

  • Patel MJ, Tipre DR, Dave SR (2011) Isolation, identification, characterization and polymetallic concentrate leaching studies of tryptic soy- and peptone-resistant thermotolerant Acidithiobacillus ferrooxidans SRDSM2. Bioresour Technol 102:1602–1607

    Article  CAS  PubMed  Google Scholar 

  • Patel BC, Tipre DR, Dave SR (2012a) Development of Leptospirillum ferriphilum dominated consortium for ferric iron regeneration and metal bioleaching under extreme stresses. Bioresour Technol 118:483–489

    Article  CAS  PubMed  Google Scholar 

  • Patel BC, Tipre DR, Dave SR (2012b) Optimization of copper and zinc extractions from polymetallic bulk concentrate and ferric iron bioregeneration under metallic stress. Hydrometallurgy 117–118:18–23

    Article  CAS  Google Scholar 

  • Quatrini R, Johnson DB (2018) Microbiomes in extremely acidic environments: functionalities and interactions that allow survival and growth of prokaryotes at low pH. Curr Opin Microbiol 43:139–147

    Article  CAS  PubMed  Google Scholar 

  • Rawling DE (1997) Biomining: theory, microbes and industrial processes. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Rawlings DE (2005) Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb Cell Factories 4:13. https://doi.org/10.1186/1475-2859-4-13

    Article  CAS  Google Scholar 

  • Rawlings DE, Johnson DB (2002) Ecology and biodiversity of extremely acidophilic microorganisms. In: Gerday C (eds.) Encyclopedia of Life Support Systems. United Nations Educational, Scientific and Cultural Organisation. EOLSS Publishers

    Google Scholar 

  • Rawlings DE, Dew D, du Plessis C (2003) Biomineralization of metal containing ores and concentrates. Trends Biotechnol 21:38–44

    Article  CAS  PubMed  Google Scholar 

  • Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Ann Rev Genet 38:525–552

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues VD, Torres TT, Ottoboni LM (2014) Bacterial diversity assessment in soil of an active Brazilian copper mine using high-throughput sequencing of 16S rDNA amplicons. Antonie Van Leeuwenhoek 106:879–890

    Article  CAS  PubMed  Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part a: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi PM, Pourbabaee AA, Manafi Z, Alikhani HA (2016) The diversity of sulfur-oxidizing bacterial populations at an Iranian copper mine and the surrounding agricultural soils. Appl Ecol Environ Res 14:509–533

    Article  Google Scholar 

  • Saidan M, Brown B, Valix M (2012) Leaching of electronic waste using biometabolised acids. Chinese J Chem Eng 20:530–534

    Article  CAS  Google Scholar 

  • Sajjad W, Bhatti TM, Hasan F, Khan S, Badshah M, Naseem A, Ali shah A (2016) Characterization of sulfur-oxidizing bacteria isolated from acid mine drainage and black shale samples. Paj J Bot 48:1253–1262

    CAS  Google Scholar 

  • Sand W, Rohde K, Sobotke B, Zenneck C (1992) Evaluation of Leptospirillum ferrooxidans for leaching. Appl Environ Microbiol 58:85–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sand W, Gehrke T, Hallmann R, Schippers A (1995) Sulfur chemistry, biofilm, and the (in)direct attack mechanism – critical evaluation of bacterial leaching. Appl Microbiol Biotechnol 43:961–966

    Article  CAS  Google Scholar 

  • Schippers A (2007) Microorganisms involved in bioleaching and nucleic acid based molecular methods for their identification and quantification. In: Donati ER, Sand W (eds) Microbial processing of metal sulphides. Springer, Dordrecht, pp 3–33

    Chapter  Google Scholar 

  • Shah MB, Tipre DR, Purohit MS, Dave SR (2015) Development of two-step process for enhanced biorecovery of cu-Zn-Ni from computer printed circuit boards. J Biosci Bioeng 120:167–173

    Article  CAS  PubMed  Google Scholar 

  • Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77:1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Sodha AB, Qureshi SA, Khatri BR, Tipre DR, Dave SR (2017) Enhancement in iron oxidation and multi-metal extraction from waste television printed circuit boards by iron oxidizing Leptospirillum feriphillum isolated from coal sample. Waste Biomass Valor. https://doi.org/10.1007/s12649-017-0082-z

    Article  CAS  Google Scholar 

  • Sodha AB, Shah MB, Qureshi SA, Tipre DR, Dave SR (2018) Decouple and compare the role of abiotic factors and developed iron and Sulphur oxidizers for enhanced extraction of metals from television printed circuit boards. Sep Sci Technol. https://doi.org/10.1080/01496395.2018.1512616

    Article  CAS  Google Scholar 

  • Tabacchioni S, Chiarini L, Bevivino A, Cantale C, Dalmastri C (2000) Bias caused by using different isolation media for assessing the genetic diversity of a natural microbial population. Microbiol Ecol 40:169–176

    CAS  Google Scholar 

  • Teeling H, Glockner FO (2012) Current opportunities and challenges in microbial metagenome analysis – a bioinformatic perspective. Brief Bioinform 13:728–742

    Article  PubMed  PubMed Central  Google Scholar 

  • Tempeton AS (2011) Geomicrobiology of iron in extreme environments. Elements 7:95–100

    Article  CAS  Google Scholar 

  • Tiedje JM, Asuming-Brempong S, Nusslein K, Marsh TL, Flynn SJ (1999) Opening the black box of soil microbial diversity. Appl Soil Ecol 13:109–122

    Article  Google Scholar 

  • Tipre DR, Dave SR (2004) Bioleaching process for cu-Pb-Zn bulk concentrate at high pulp density. Hydrometallurgy 75:37–43

    Article  CAS  Google Scholar 

  • Urbieta MS, Gonzalez Toril E, Aguilera A, Giaveno MA, Donati E (2012) First prokaryotic biodiversity assessment using molecular techniques of an acidic river in Neuquen, Argentina. Microbe Ecol 64:91–104

    Article  Google Scholar 

  • Vásquez M, Espejo RT (1997) Chemolithotrophic bacteria in copper ores leached at high sulfuric acid concentration. Appl Environ Microbiol 63:332–334

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Yu W, Zhao S, Jiang G (2011) Isolation and identification of Acidithiobacillus ferrooxidans and its desulfurization reclamation of ground tyer rubber. JB Univ Chem Technol 38:105–109

    CAS  Google Scholar 

  • Xiao Y, Liu X, Ma L, Liang Y, Niu J, Gu Y, Zhang X, Hao X, Dong W, She S, Yin H (2016) Microbial communities from different subsystems in biological heap leaching system play different roles in iron and Sulphur metabolisms. Appl Microbiol Biotechnol 100:6871–6880

    Article  CAS  PubMed  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29:111–129

    Article  CAS  Google Scholar 

  • Zhang L, Mao F, Li K, Wang Y, Chen X, Zhou H (2015) Enhancement in copper extraction from chalcopyrite by re-inoculation of different acidophilic, moderately thermophilic microorganisms. Hydrometallurgy 156:142–151

    Article  CAS  Google Scholar 

  • Zhang X, Liu X, Yang F, Chen L (2018) Pan-genome analysis links the hereditary variation of Leptospirillum ferriphilum with its evolutionary adaptation. Front Microbiol 9:577

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziegler S, Dolch K, Geiger K, Krause S, Asskamp M, Eusterhues K, Kriews M, Wilhelms-Dick D, Goettlicher J, Majzlan J, Gescher J (2013) Oxygen-dependent niche formation of a pyrite-dependent acidophilic consortium built by archaea and bacteria. ISME J 7:1725–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dave, S.R., Tipre, D.R. (2019). Diversity of Iron and Sulphur Oxidizers in Sulphide Mine Leachates. In: Satyanarayana, T., Johri, B., Das, S. (eds) Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-8315-1_10

Download citation

Publish with us

Policies and ethics