Skip to main content

Halotolerant Plant Growth-Promoting Fungi and Bacteria as an Alternative Strategy for Improving Nutrient Availability to Salinity-Stressed Crop Plants

  • Chapter
  • First Online:
Saline Soil-based Agriculture by Halotolerant Microorganisms

Abstract

Nowadays, it is imperative to address the management of crop production in difficult environmental conditions in order to achieve the maximum potential of plant growth and yield for providing enough food. Increasing demand for plant products has been coupled with decreasing cultivated land due to the limitation of water and soil resources. Salinity is one of the most important abiotic stresses that both limit the production of agricultural products in arid and semiarid areas and decrease arable land across the world. Plant nutrition imbalances due to excessive absorption of sodium (Na+), and chloride (Cl−) ions also reduce the absorption of macronutrients such as potassium (K), calcium (Ca), magnesium (Mg), nitrogen (N), and phosphorus (P) and micronutrients such as iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), and boron (B). To satisfy crop nutritional requirements under salinity stress, micro- and macronutrients are usually added to soil as chemical fertilizers; however synthesis of these fertilizers is highly energy-intensive processes and has long-term impacts on the environment in terms of eutrophication, soil fertility depletion, and carbon footprint. Such environmental concerns have led to the search for sustainable way of providing crops with nutrients. In this regard, plant growth-promoting salinity-tolerant microorganisms have been seen as best eco-friendly means for nutrition of salinity-stressed crop plants. These microorganisms increase the nutrient bioavailability through N2 fixation and mobilization of key nutrients (P, K, and micronutrients) to the crop plants. Use of salinity-tolerant microorganisms is also known as an alternative, innovative, environmental friendly option to reduce the use of costly and non-environmental friendly chemical fertilizers and can represent a promising approach to increase nutrient bioavailability and facilitate the development of saline soil-based agriculture. In this chapter, current knowledge on the mechanisms used by plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal (AM) fungi to influence soil nutrient bioavailability (N, P, K, and micronutrients) under salinity stress is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelmoumen H, El Idrissi MM (2009) Germination, growth and nodulation of Trigonella foenum graecum (Fenu Greek) under salt stress. Afr J Biotechnol 8:2489–2496

    CAS  Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P (2013) Oxidative damage to plants, antioxidant networks and signaling. Academic, Elsevier, San Diego

    Google Scholar 

  • Ahmed W, Shahroona B, Zahir ZA, Arshad M (2004) Inoculation with ACC-deaminase containing rhizobacteria for improving growth and yield of wheat. Pak J Agric Sci 41:119

    Google Scholar 

  • Albacete A et al (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 59:4119–4131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aliasgharzadeh N, Rastin SN, Towfighi H, Alizadeh A (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11:119–122

    Article  CAS  Google Scholar 

  • Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54

    Article  CAS  Google Scholar 

  • Al-Karaki GN (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Horticult 109:1–7

    Article  Google Scholar 

  • Al-Karaki GN, Clark RB (1998) Growth, mineral acquisition, and water use by mycorrhizal wheat grown under water stress. J Plant Nutr 21:263–276

    Article  CAS  Google Scholar 

  • America SSSo (2001) Glossary of soil science terms. Soil Science Society of America, Madison

    Google Scholar 

  • Andrade G, Linderman RG, Bethlenfalvay GJ (1998) Bacterial associations with the mycorrhizosphere and hyphosphere of the arbuscular mycorrhizal fungus Glomus mosseae. Plant Soil 202:79–87

    Article  CAS  Google Scholar 

  • Arocena JM, Velde B, Robertson SJ (2012) Weathering of biotite in the presence of arbuscular mycorrhizae in selected agricultural crops. Appl Clay Sci 64:12–17

    Article  CAS  Google Scholar 

  • Asghari HR (2012) Vesicular-arbuscular (VA) mycorrhizae improve salinity tolerance in pre-inoculation subterranean clover (Trifolium subterraneum) seedlings. Int J Plant Prod 2:243–256

    Google Scholar 

  • Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162

    CAS  Google Scholar 

  • Aydi S, Sassi S, Abdelly C (2008) Growth, nitrogen fixation and ion distribution in Medicago truncatula subjected to salt stress. Plant Soil 312:59

    Article  CAS  Google Scholar 

  • Bach Allen E, Cunningham GL (1983) Effects of vesicular–arbuscular mycorrhizae on Distichlis spicata under three salinity levels. New Phytol 93:227–236

    Article  Google Scholar 

  • Badr MA, Shafei AM, Sharaf El-Deen SH (2006) The dissolution of K and P-bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Res J Agric Biol Sci 2:5–11

    Google Scholar 

  • Banerjee S, Palit R, Sengupta C, Standing D (2010) Stress induced phosphate solubilization by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. Aust J Crop Sci 4:378

    CAS  Google Scholar 

  • Banik P, Midya A, Sarkar BK, Ghose SS (2006) Wheat and chickpea intercropping systems in an additive series experiment: advantages and weed smothering. Eur J Agron 24:325–332

    Article  Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2006) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Horticult 109:8–14. https://doi.org/10.1016/j.scienta.2006.02.025

    Article  CAS  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2005) Interactions between mycorrhizal fungi and bacteria to improve plant nutrient cycling and soil structure. In: Microorganisms in soils: roles in genesis and functions. Springer, pp 195–212

    Google Scholar 

  • Barrow JR, Osuna P (2002) Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. J Arid Environ 51:449–459

    Article  Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235–255

    Article  CAS  Google Scholar 

  • Basak BB, Biswas DR (2010) Co-inoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biol Fertil Soils 46:641–648

    Article  Google Scholar 

  • Bashan Y, Moreno M, Troyo E (2000) Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biol Fertil Soils 32:265–272

    Article  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181:413–423. https://doi.org/10.1111/j.1469-8137.2008.02657.x

    Article  CAS  PubMed  Google Scholar 

  • Bhandal IS, Malik CP (1988) Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants. In: International review of cytology, vol 110. Elsevier, pp 205–254

    Google Scholar 

  • Bian G, Zhang Y, Qin S, Xing K, Xie H, Jiang J (2011) Isolation and biodiversity of heavy metal tolerant endophytic bacteria from halotolerant plant species located in coastal shoal of Nantong. Wei Sheng Wu Xue Bao = Acta Microbiol Sin 51:1538–1547

    CAS  Google Scholar 

  • Botella MA, Martinez V, Pardines J, Cerdá A (1997) Salinity induced potassium deficiency in maize plants. J Plant Physiol 150:200–205. https://doi.org/10.1016/S0176-1617(97)80203-9

    Article  CAS  Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    Article  CAS  Google Scholar 

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84

    Article  Google Scholar 

  • Caris C, Hördt W, Hawkins H-J, Römheld V, George E (1998) Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza 8:35–39

    Article  CAS  Google Scholar 

  • Carmen B, Roberto D (2011) Soil bacteria support and protect plants against abiotic stresses. In: Shanker A (ed) Abiotic stress in plants mechanisms and adaptations. Pub InTech, Rijeka, pp 143–170

    Google Scholar 

  • Cerda A, Pardines J, Botella MA, Martinez V (1995) Effect of potassium on growth, water relations, and the inorganic and organic solute contents for two maize cultivars grown under saline conditions. J Plant Nutr 18:839–851

    Article  CAS  Google Scholar 

  • Chakraborty U, Chakraborty B, Basnet M (2006) Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J Basic Microbiol 46:186–195. https://doi.org/10.1002/jobm.200510050

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty D et al (2008) Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment. Agric Water Manag 95:1323–1334

    Article  Google Scholar 

  • Chakraborty U, Chakraborty B, Dey P, Chakraborty AP (2015). 15) Role of microorganisms in alleviation of abiotic stresses for sustainable agriculture abiotic stresses in crop plants. CABI, Wallingford, p 232

    Google Scholar 

  • Chalk PM, Souza RF, Urquiaga S, Alves BJR, Boddey RM (2006) The role of arbuscular mycorrhiza in legume symbiotic performance. Soil Biol Biochem 38:2944–2951

    Article  CAS  Google Scholar 

  • Chalk PM, Alves BJR, Boddey RM, Urquiaga S (2010) Integrated effects of abiotic stresses on inoculant performance, legume growth and symbiotic dependence estimated by 15 N dilution. Plant Soil 328:1–16

    Article  CAS  Google Scholar 

  • Chen J-H (2006) The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. Citeseer, p 20

    Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Cheng-Song XIN, He-Zhong D, Zhen L, Wei T, Zhang D-M, Wei-Jiang LI, Xiang-Qiang K (2010) Effects of N, P, and K fertilizer application on cotton growing in saline soil in yellow river delta. Acta Agron Sin 36:1698–1706

    Article  Google Scholar 

  • Cherif-Silini H, Silini A, Ghoul M, Yahiaoui B, Arif F (2013) Solubilization of phosphate by the Bacillus under salt stress and in the presence of osmoprotectant compounds. Afr J Microbiol Res 7:4562–4571

    Article  Google Scholar 

  • Choudhary D (2012) Microbial rescue to plant under habitat-imposed abiotic and biotic stresses. Appl Microbiol Biotechnol 96:1137–1155

    Article  CAS  PubMed  Google Scholar 

  • Choudhary DK, Kasotia A, Jain S, Vaishnav A, Kumari S, Sharma KP, Varma A (2015) Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J Plant Growth Regul 1–25

    Google Scholar 

  • Clark RB, Zeto SK (1996) Mineral acquisition by mycorrhizal maize grown on acid and alkaline soil. Soil Biol Biochem 28:1495–1503

    Article  CAS  Google Scholar 

  • Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fertil Soils 44:501–509

    Article  CAS  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortina C, Culiáñez-Macià FA (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169:75–82

    Article  CAS  Google Scholar 

  • Cozzolino V, Di Meo V, Piccolo A (2013) Impact of arbuscular mycorrhizal fungi applications on maize production and soil phosphorus availability. J Geochem Explor 129:40–44

    Article  CAS  Google Scholar 

  • Dahmardeh M, Ghanbari A, Syasar B, Ramroudi M (2009) Effect of intercropping maize (Zea mays L.) with cow pea (Vigna unguiculata L.) on green forage yield and quality evaluation. Asian J Plant Sci 8:235

    Article  Google Scholar 

  • Damodaran T et al (2014) Rhizosphere and endophytic bacteria for induction of salt tolerance in gladiolus grown in sodic soils. J Plant Interact 9:577–584

    Article  CAS  Google Scholar 

  • Davies WJ, Zhang J, Yang J, Dodd IC (2011) Novel crop science to improve yield and resource use efficiency in water-limited agriculture. J Agric Sci 149:123–131

    Article  Google Scholar 

  • del Amor Francisco M, Cuadra-Crespo P (2012) Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Funct Plant Biol 39:82–90

    Article  CAS  PubMed  Google Scholar 

  • Delavechia C, Hampp E, Fabra A, Castro S (2003) Influence of pH and calcium on the growth, polysaccharide production and symbiotic association of Sinorhizobium meliloti SEMIA 116 with alfalfa roots. Biol Fertil Soils 38:110–114

    Article  CAS  Google Scholar 

  • Delgado-García M, De la Garza-Rodríguez I, Cruz-Hernández MA, Balagurusamy N, Aguilar C, Rodríguez-Herrera R (2013) Characterization and selection of halophilic microorganisms isolated from Mexican soils. J Agric Biol Sci 8:457–464

    Google Scholar 

  • Diby P, Bharathkumar S, Sudha N (2005a) Osmotolerance in biocontrol strain of pseudomonas pseudoalcaligenes MSP-538: a study using osmolyte, protein and gene expression profiling. Ann Microbiol 55:243–247

    CAS  Google Scholar 

  • Diby P, Sarma YR, Srinivasan V, Anandaraj M (2005b) Pseudomonas fluorescens mediated vigour in black pepper (piper nigrum L.) under green house cultivation. Ann Microbiol 55:171–174

    Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694. https://doi.org/10.1111/j.1365-3040.2009.02028.x

    Article  CAS  PubMed  Google Scholar 

  • Dolkar D, Dolkar P, Angmo S, Chaurasia OP, Stobdan T (2018) Stress tolerance and plant growth promotion potential of Enterobacter ludwigii PS1 isolated from Seabuckthorn rhizosphere. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2018.04.012

    Article  Google Scholar 

  • Dulormne M, Musseau O, Muller F, Toribio A, Bâ A (2010) Effects of NaCl on growth, water status, N 2 fixation, and ion distribution in Pterocarpus officinalis seedlings. Plant Soil 327:23–34

    Article  CAS  Google Scholar 

  • Dunlap JR, Binzel ML (1996) NaCI reduces indole-3-acetic acid levels in the roots of tomato plants independent of stress-induced abscisic acid. Plant Physiol 112:379–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duzan HM, Zhou X, Souleimanov A, Smith DL (2004) Perception of Bradyrhizobium japonicum Nod factor by soybean [Glycine max (L.) Merr.] root hairs under abiotic stress conditions. J Exp Bot 55:2641–2646

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45:563–571

    Article  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9. https://doi.org/10.1111/j.1462-2920.2007.01424.x

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen L (2013) Alleviation of salt stress of symbiotic Galega officinalis L. (goat’s rue) by co-inoculation of Rhizobium with root-colonizing Pseudomonas. Plant Soil 369:453–465. https://doi.org/10.1007/s11104-013-1586-3

    Article  CAS  Google Scholar 

  • Egamberdiyeva D (2005) Plant-growth-promoting rhizobacteria isolated from a Calcisol in a semi-arid region of Uzbekistan: biochemical characterization and effectiveness. J Plant Nutr Soil Sci 168:94–99

    Article  CAS  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R–27R

    Article  CAS  PubMed  Google Scholar 

  • El-Tarabily KA, Youssef T (2010) Enhancement of morphological, anatomical and physiological characteristics of seedlings of the mangrove Avicennia marina inoculated with a native phosphate-solubilizing isolate of Oceanobacillus picturae under greenhouse conditions. Plant Soil 332:147–162

    Article  CAS  Google Scholar 

  • Esquivel-Cote R, Ramírez-Gama RM, Tsuzuki-Reyes G, Orozco-Segovia A, Huante P (2010) Azospirillum lipoferum strain AZm5 containing 1-aminocyclopropane-1-carboxylic acid deaminase improves early growth of tomato seedlings under nitrogen deficiency. Plant Soil 337:65–75. https://doi.org/10.1007/s11104-010-0499-7

    Article  CAS  Google Scholar 

  • Etesami H (2018) Can interaction between silicon and plant growth promoting rhizobacteria benefit in alleviating abiotic and biotic stresses in crop plants? Agric Ecosyst Environ 253:98–112. https://doi.org/10.1016/j.agee.2017.11.007

    Article  CAS  Google Scholar 

  • Etesami H, Alikhani HA (2016a) Co-inoculation with endophytic and rhizosphere bacteria allows reduced application rates of N-fertilizer for rice plant. Rhizosphere 2:5–12

    Article  Google Scholar 

  • Etesami H, Alikhani HA (2016b) Rhizosphere and endorhiza of oilseed rape (Brassica napus L.) plant harbor bacteria with multifaceted beneficial effects. Biol Control 94:11–24. https://doi.org/10.1016/j.biocontrol.2015.12.003

    Article  Google Scholar 

  • Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Probiotics and plant health. Springer, pp 163–200

    Google Scholar 

  • Etesami H, Beattie G (2018) Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol 9:148. https://doi.org/10.3389/fmicb.2018.00148

    Article  PubMed  PubMed Central  Google Scholar 

  • Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicol Environ Saf 156:225–246. https://doi.org/10.1016/j.ecoenv.2018.03.013

    Article  CAS  PubMed  Google Scholar 

  • Etesami H, Alikhani HA, Hosseini HM (2015a) Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX 2:72–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Etesami H, Alikhani HA, Mirseyed Hosseini H (2015b) Indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminase: bacterial traits required in rhizosphere, rhizoplane and/or endophytic competence by beneficial bacteria. In: Maheshwari DK (ed) Bacterial metabolites in sustainable agroecosystem. Springer, Cham, pp 183–258. https://doi.org/10.1007/978-3-319-24654-3_8

    Chapter  Google Scholar 

  • Etesami H, Emami S, Alikhani HA (2017) Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects – a review. J Soil Sci Plant Nutr 17:897–911

    Article  CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fageria NK, Moreira A (2011). 4) The role of mineral nutrition on root growth of crop plants. Adv Agron 110:251–331

    Article  CAS  Google Scholar 

  • FAO (2005) Available on URL: http://www.fao.org

  • FAO (2008) Land and plant nutrition management service. http://www.fao.org/ag/agl/agll/spush

  • Farías-Rodríguez R, Mellor RB, Arias C, Peña-Cabriales JJ (1998) The accumulation of trehalose in nodules of several cultivars of common bean (Phaseolus vulgaris) and its correlation with resistance to drought stress. Physiol Plant 102:353–359

    Article  Google Scholar 

  • Feigin A (1985) Fertilization management of crops irrigated with saline water. Plant Soil 89:285–299. https://doi.org/10.1007/BF02182248

    Article  CAS  Google Scholar 

  • Feng G, Zhang F, Li X, Tian C, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  CAS  PubMed  Google Scholar 

  • Fernandez O, Béthencourt L, Quero A, Sangwan RS, Clément C (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15:409–417

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • Founoune H, Duponnois R, Bâ AM, El Bouami F (2002) Influence of the dual arbuscular endomycorrhizal/ectomycorrhizal symbiosis on the growth of Acacia holosericea (A. Cunn. ex G. Don) in glasshouse conditions. Ann For Sci 59:93–98

    Article  Google Scholar 

  • Franco-Correa M, Quintana A, Duque C, Suarez C, Rodríguez MX, Barea J-M (2010) Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl Soil Ecol 45:209–217

    Article  Google Scholar 

  • Franzini VI, Azcon R, Mendes FL, Aroca R (2010) Interactions between Glomus species and Rhizobium strains affect the nutritional physiology of drought-stressed legume hosts. J Plant Physiol 167:614–619

    Article  CAS  PubMed  Google Scholar 

  • Fu Q, Liu C, Ding N, Lin Y, Guo B (2010) Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress. Agric Water Manag 97:1994–2000. https://doi.org/10.1016/j.agwat.2010.02.003

    Article  Google Scholar 

  • Gamalero E, Glick BR (2011) Mechanisms used by plant growth-promoting bacteria. In: Bacteria in agrobiology: plant nutrient management. Springer, pp 17–46

    Google Scholar 

  • Gao X, Kuyper TW, Zou C, Zhang F, Hoffland E (2007) Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when nonmycorrhizal. Plant Soil 290:283–291

    Article  CAS  Google Scholar 

  • Garcia NS, Fu F, Sedwick PN, Hutchins DA (2015) Iron deficiency increases growth and nitrogen-fixation rates of phosphorus-deficient marine cyanobacteria. ISME J 9:238–245. https://doi.org/10.1038/ismej.2014.104

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Chandel S (2011) The effects of salinity on nitrogen fixation and trehalose metabolism in mycorrhizal Cajanus cajan (L.) millsp. plants. J Plant Growth Regul 30:490–503

    Article  CAS  Google Scholar 

  • Garg N, Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation on salt-induced nodule senescence in Cajanus cajan (pigeonpea). J Plant Growth Regul 27:115

    Article  CAS  Google Scholar 

  • Garg N, Manchanda G (2009) Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by salinity in Cajanus cajan (L.) Millsp.(pigeonpea). J Agron Crop Sci 195:110–123

    Article  CAS  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    Article  PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175

    Article  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Gontia I, Kavita K, Schmid M, Hartmann A, Jha B (2011) Brachybacterium saurashtrense sp. nov., a halotolerant root-associated bacterium with plant growth-promoting potential. Int J Syst Evol Microbiol 61:2799–2804

    Article  CAS  PubMed  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Goss MJ, De Varennes A (2002) Soil disturbance reduces the efficacy of mycorrhizal associations for early soybean growth and N2 fixation. Soil Biol Biochem 34:1167–1173

    Article  CAS  Google Scholar 

  • Grant CA, Flaten DN, Tomasiewicz DJ, Sheppard SC (2001) The importance of early season phosphorus nutrition. Can J Plant Sci 81:211–224

    Article  CAS  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412. https://doi.org/10.1016/j.soilbio.2004.08.030

    Article  CAS  Google Scholar 

  • Greaves JE (1922) Influence of salts on bacterial activities of soil. Bot Gaz 73:161–180

    Article  CAS  Google Scholar 

  • Grobelak A, Hiller J (2017) Bacterial siderophores promote plant growth: screening of catechol and hydroxamate siderophores. Int J Phytoremediation 19:825–833

    Article  CAS  PubMed  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Gulati A, Sharma N, Vyas P, Sood S, Rahi P, Pathania V, Prasad R (2010) Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizosphaerae strain BIHB 723 isolated from the cold deserts of the trans-Himalayas. Arch Microbiol 192:975–983

    Article  CAS  PubMed  Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. In: Food security in nutrient-stressed environments: exploiting plants’ genetic capabilities. Springer, pp 133–143

    Google Scholar 

  • Hajiboland R, Aliasgharzad N, Barzeghar R (2009) Influence of arbuscular mycorrhizal fungi on uptake of Zn and P by two contrasting rice genotypes. Plant Soil Environ 55:93–100

    Article  CAS  Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327

    Article  CAS  Google Scholar 

  • Halvorson HO, Keynan A, Kornberg HL (1990) Utilization of calcium phosphates for microbial growth at alkaline pH. Soil Biol Biochem 22:887–890

    Article  CAS  Google Scholar 

  • Hamdia MAE-S, Shaddad MAK, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44:165–174. https://doi.org/10.1023/B:GROW.0000049414.03099.9b

    Article  CAS  Google Scholar 

  • Hamilton CE, Bever JD, Labbé J, Yang X, Yin H (2016) Mitigating climate change through managing constructed-microbial communities in agriculture. Agric Ecosyst Environ 216:304–308

    Article  Google Scholar 

  • Han H-S, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130

    Article  CAS  Google Scholar 

  • Hingole SS, Pathak AP (2016) Saline soil microbiome: a rich source of halotolerant PGPR. J Crop Sci Biotechnol 19:231–239

    Article  Google Scholar 

  • Hirrel MC, Gerdemann JW (1980) Improved growth of onion and bell pepper in saline soils by two vesicular-arbuscular mycorrhizal fungi. 1. Soil Sci Soc Am J 44:654–655

    Article  CAS  Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol Biochem 24:389–395

    Article  Google Scholar 

  • Iniguez AL, Dong Y, Carter HD, Ahmer BM, Stone JM, Triplett EW (2005) Regulation of enteric endophytic bacterial colonization by plant defenses. Mol Plant-Microbe Interact MPMI 18:169–178. https://doi.org/10.1094/mpmi-18-0169

    Article  CAS  PubMed  Google Scholar 

  • Iqbal Hussain M, Naeem Asghar H, Javed Akhtar M, Arshad M (2013) Impact of phosphate solubilizing bacteria on growth and yield of maize. Soil Environ 32:71–78

    Google Scholar 

  • Iqbal U, Jamil N, Ali I, Hasnain S (2010) Effect of zinc-phosphate-solubilizing bacterial isolates on growth of Vigna radiata. Ann Microbiol 60:243–248

    Article  Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30:435–458. https://doi.org/10.1080/07352689.2011.605739

    Article  Google Scholar 

  • Jebara S, Drevon JJ, Jebara M (2010) Modulation of symbiotic efficiency and nodular antioxidant enzyme activities in two Phaseolus vulgaris genotypes under salinity. Acta Physiol Plant 32:925–932

    Article  Google Scholar 

  • Jha B, Gontia I, Hartmann A (2012) The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 356:265–277

    Article  CAS  Google Scholar 

  • Joe MM, Devaraj S, Benson A, Sa T (2016) Isolation of phosphate solubilizing endophytic bacteria from Phyllanthus amarus Schum & Thonn: evaluation of plant growth promotion and antioxidant activity under salt stress. J Appl Res Med Aromat Plants 3:71–77

    Google Scholar 

  • Johnston AE, Krauss A (1998) The essential role of potassium in diverse cropping systems: future research needs and benefits. In: Essential role of potassium in diverse cropping systems. International Potash Institute, Basel, pp 101–120

    Google Scholar 

  • Johri JK, Surange S, Nautiyal CS (1999) Occurrence of salt, pH, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils. Curr Microbiol 39:89–93

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Oburger E (2011) Solubilization of phosphorus by soil microorganisms. In: Phosphorus in action. Springer, pp 169–198

    Google Scholar 

  • Karlidag H, Yildirim E, Turan M, Pehluvan M, Donmez F (2013) Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria× ananassa). Hortscience 48:563–567

    Article  CAS  Google Scholar 

  • Katznelson H, Peterson EA, Rouatt JW (1962) Phosphate-dissolving microorganisms on seed and in the root zone of plants. Can J Bot 40:1181–1186

    Article  CAS  Google Scholar 

  • Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA (2009a) The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Horticult 121:1–6

    Article  CAS  Google Scholar 

  • Kaya C, Tuna AL, YokaÅŸ I (2009b) The role of plant hormones in plants under salinity stress. In: Salinity and water stress. Springer, pp 45–50

    Google Scholar 

  • Kaymak HC, Guvenc I, Yarali F, Donmez MF (2009) The effects of bio-priming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turk J Agric For 33:173–179

    CAS  Google Scholar 

  • Khadri M, Tejera NA, Lluch C (2006) Alleviation of salt stress in common bean (Phaseolus vulgaris) by exogenous abscisic acid supply. J Plant Growth Regul 25:110–119

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Ahemad M, Oves M (2009) Functional diversity among plant growth-promoting rhizobacteria: current status. In: Microbial strategies for crop improvement. Springer, pp 105–132

    Google Scholar 

  • Khan AL, Hamayun M, Kang S-M, Kim Y-H, Jung H-Y, Lee J-H, Lee I-J (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:1

    Article  CAS  Google Scholar 

  • Kim J, Rees DC (1994) Nitrogenase and biological nitrogen fixation. Biochemistry 33:389–397. https://doi.org/10.1021/bi00168a001

    Article  CAS  PubMed  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1997) Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26:79–87

    Article  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152

    Article  CAS  PubMed  Google Scholar 

  • Koide RT, Kabir Z (2000) Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol 148:511–517

    Article  CAS  PubMed  Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    Article  PubMed  Google Scholar 

  • Kucey RMN (1983) Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can J Soil Sci 63:671–678

    Article  CAS  Google Scholar 

  • Kucey RMN, Janzen HH, Leggett ME (1989) Microbially mediated increases in plant-available phosphorus. In: Advances in agronomy, vol 42. Elsevier, pp 199–228

    Google Scholar 

  • Kumar A, Sharma S, Mishra S (2010) Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation, and mycorrhizal dependency of Jatropha curcas L. J Plant Growth Regul 29:297–306

    Article  CAS  Google Scholar 

  • Latour X, Delorme S, Mirleau P, Lemanceau P (2009) Identification of traits implicated in the rhizosphere competence of fluorescent pseudomonads: description of a strategy based on population and model strain studies. In: Sustainable agriculture. Springer, pp 285–296

    Google Scholar 

  • Long RL et al (2008) Seed persistence in the field may be predicted by laboratory-controlled aging. Weed Sci 56:523–528

    Article  CAS  Google Scholar 

  • López M, Lluch C (2008) Nitrogen fixation is synchronized with carbon metabolism in Lotus japonicus and Medicago truncatula nodules under salt stress. J Plant Interact 3:137–144

    Article  CAS  Google Scholar 

  • López M, Tejera NA, Iribarne C, Lluch C, Herrera-Cervera JA (2008) Trehalose and trehalase in root nodules of Medicago truncatula and Phaseolus vulgaris in response to salt stress. Physiol Plant 134:575–582

    Article  PubMed  CAS  Google Scholar 

  • Ma JF (2005) Plant root responses to three abundant soil minerals: silicon, aluminum and iron. Crit Rev Plant Sci 24:267–281

    Article  CAS  Google Scholar 

  • Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A (2010) Halophiles 2010: life in saline environments. Appl Environ Microbiol 76:6971–6981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mapelli F et al (2013) Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. BioMed Res Int 2013:248078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marasco R et al (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7:e48479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • McLean EO, Watson ME (1985) Soil measurements of plant-available potassium. In: Potassium in agriculture, pp 277–308

    Google Scholar 

  • McMillen BG, Juniper S, Abbott LK (1998) Inhibition of hyphal growth of a vesicular-arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biol Biochem 30:1639–1646

    Article  CAS  Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Mensah JK, Ihenyen J (2009) Effects of salinity on germination, seedling establishment and yield of three genotypes of mung bean (Vigna mungo L. Hepper) in Edo State, Nigeria. Niger Ann Nat Sci 8:17–24

    Google Scholar 

  • Miller SH, Browne P, Prigent-Combaret C, Combes-Meynet E, Morrissey JP, O’Gara F (2010) Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species. Environ Microbiol Rep 2:403–411

    Article  CAS  PubMed  Google Scholar 

  • Mills HAJJ et al (1996) Plant analysis handbook II: a practical preparation, analysis, and interpretation guide. Potash and Phosphate Institute

    Google Scholar 

  • MiloÅ¡ević NA, Marinković JB, Tintor BB (2012) Mitigating abiotic stress in crop plants by microorganisms. Zbornik Matice Srpske Za Prirodne Nauke 17–26

    Google Scholar 

  • Miransari M (2013) Soil microbes and the availability of soil nutrients. Acta Physiol Plant 35:3075–3084

    Article  CAS  Google Scholar 

  • Miransari M, Smith D (2008) Using signal molecule genistein to alleviate the stress of suboptimal root zone temperature on soybean-Bradyrhizobium symbiosis under different soil textures. J Plant Interact 3:287–295

    Article  Google Scholar 

  • Mohammad MJ, Malkawi HI, Shibli R (2003) Effects of arbuscular mycorrhizal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts. J Plant Nutr 26:125–137

    Article  CAS  Google Scholar 

  • Moradi A, Tahmourespour A, Hoodaji M, Khors F (2011) Effect of salinity on free living-diazotroph and total bacterial populations of two saline soils. Afr J Microbiol Res 5:144–148

    CAS  Google Scholar 

  • Müller J, Boller T, Wiemken A (2001) Trehalose becomes the most abundant non-structural carbohydrate during senescence of soybean nodules. J Exp Bot 52:943–947

    Article  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  • Nabiollahy K, Khormali F, Bazargan K, Ayoubi S (2006) Forms of K as a function of clay mineralogy and soil development. Clay Miner 41:739–749

    Article  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can J Microbiol 55:1302–1309

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Nawaz S (2013) Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Ann Microbiol 63:225–232

    Article  CAS  Google Scholar 

  • Navarro JM, Botella MA, Cerdá A, Martinez V (2001) Phosphorus uptake and translocation in salt-stressed melon plants. J Plant Physiol 158:375–381

    Article  CAS  Google Scholar 

  • Naz I, Bano A, Ul-Hassan T (2009) Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. Afr J Biotechnol 8:5762–5768

    Article  CAS  Google Scholar 

  • Ocón A, Hampp R, Requena N (2007) Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi. New Phytol 174:879–891

    Article  PubMed  CAS  Google Scholar 

  • Ojala JC, Jarrell WM, Menge JA, Johnson ELV (1983) Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. 1. Agron J 75:255–259

    Article  CAS  Google Scholar 

  • Orhan F, Gulluce M (2015) Isolation and characterization of salt-tolerant bacterial strains in salt-affected soils of Erzurum, Turkey. Geomicrobiol J 32:521–529

    Article  CAS  Google Scholar 

  • Osorio Vega NW (2007) A review on beneficial effects of rhizosphere bacteria on soil nutrient availability and plant nutrient uptake. Rev Fac Nac Agron Medellin 60:3621–3643

    Google Scholar 

  • Owen D, Williams AP, Griffith GW, Withers PJA (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Appl Soil Ecol 86:41–54

    Article  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349. https://doi.org/10.1016/j.ecoenv.2004.06.010

    Article  CAS  PubMed  Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3:25–31

    Google Scholar 

  • Patel AD, Jadeja H, Pandey AN (2010) Effect of salinization of soil on growth, water status and nutrient accumulation in seedlings of Acacia auriculiformis (Fabaceae). J Plant Nutr 33:914–932

    Article  CAS  Google Scholar 

  • Patreze CM, Cordeiro L (2004) Nitrogen-fixing and vesicular–arbuscular mycorrhizal symbioses in some tropical legume trees of tribe Mimoseae. For Ecol Manag 196:275–285

    Article  Google Scholar 

  • Paul D (2012) Osmotic stress adaptations in rhizobacteria. J Basic Microbiol 52:1–10

    Article  Google Scholar 

  • Paul D (2013) Osmotic stress adaptations in rhizobacteria. J Basic Microbiol 53:101–110. https://doi.org/10.1002/jobm.201100288

    Article  CAS  PubMed  Google Scholar 

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34:737–752

    Article  Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a Plant Growth Promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:378–384. https://doi.org/10.1002/jobm.200700365

    Article  CAS  PubMed  Google Scholar 

  • Paul D, Sarma YR (2006) Plant growth promoting rhizobacteria (PGPR)-mediated root proliferation in black pepper (Piper nigrum L.) as evidenced through GS Root software. Arch Phytopathol Plant Protect 39:311–314

    Article  CAS  Google Scholar 

  • Penfold C (2001) 32. In: May R (ed) Phosphorus management in broadacre organic farming systems, p 179

    Google Scholar 

  • Pereira PAA, Bliss FA (1989) Selection of common bean (Phaseolus vulgaris L.) for N2 fixation at different levels of available phosphorus under field and environmentally-controlled conditions. Plant Soil 115:75–82

    Article  CAS  Google Scholar 

  • Pereira SIA, Castro PML (2014) Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils. Ecol Eng 73:526–535

    Article  Google Scholar 

  • Peters NK, Crist-Estes DK (1989) Nodule formation is stimulated by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol 91:690–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson RL, Massicotte HB, Melville LH (2004) Mycorrhizas: anatomy and cell biology. NRC Research Press, Ottawa

    Google Scholar 

  • Pfetffer CM, Bloss HE (1988) Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular–arbuscular mycorrhiza and phosphorus fertilization. New Phytol 108:315–321

    Article  PubMed  Google Scholar 

  • Piccoli P, Travaglia C, Cohen A, Sosa L, Cornejo P, Masuelli R, Bottini R (2011) An endophytic bacterium isolated from roots of the halophyte Prosopis strombulifera produces ABA, IAA, gibberellins A1 and A3 and jasmonic acid in chemically-defined culture medium. Plant Growth Regul 64:207–210

    Article  CAS  Google Scholar 

  • Pii Y, Penn A, Terzano R, Crecchio C, Mimmo T, Cesco S (2015) Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants. Plant Physiol Biochem 87:45–52

    Article  CAS  PubMed  Google Scholar 

  • Pond EC, Menge JA, Jarrell WM (1984) Improved growth of tomato in salinized soil by vesicular-arbuscular mycorrhizal fungi collected from saline soils. Mycologia 76:74–84

    Article  Google Scholar 

  • Poonguzhali S, Madhaiyan M, Sa T (2008) Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. J Microbiol Biotechnol 18:773–777

    CAS  PubMed  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    Article  CAS  Google Scholar 

  • Porras-Soriano A, Soriano-Martín ML, Porras-Piedra A, Azcón R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359

    Article  CAS  PubMed  Google Scholar 

  • Poss JA, Pond E, Menge JA, Jarrell WM (1985) Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate. Plant Soil 88:307–319

    Article  CAS  Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2012) Isolation of two potassium solubilizing fungi from ceramic industry soils. Life Sci Leafl 5:71–75

    Google Scholar 

  • Rabhi M, Barhoumi Z, Ksouri R, Abdelly C, Gharsalli M (2007) Interactive effects of salinity and iron deficiency in Medicago ciliaris. C R Biol 330:779–788

    Article  CAS  PubMed  Google Scholar 

  • Rabie G, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4:210–222

    CAS  Google Scholar 

  • Radzki W, Mañero FJG, Algar E, García JAL, García-Villaraco A, Solano BR (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104:321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. SpringerPlus 2:1–6

    Article  CAS  Google Scholar 

  • Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IMI, Oves M (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41

    Article  CAS  PubMed  Google Scholar 

  • Rawal R, Kuligod VB (2014) Influence of graded doses of nitrogen on nutrient uptake and grain yield of maize (Zea mays) under varying levels of soil salinity. Karnataka J Agric Sci 27:22–24

    Google Scholar 

  • Rawat R, Tewari L (2011) Effect of abiotic stress on phosphate solubilization by biocontrol fungus Trichoderma sp. Curr Microbiol 62:1521–1526

    Article  CAS  PubMed  Google Scholar 

  • Rehman A, Nautiyal CS (2002) Effect of drought on the growth and survival of the stress-tolerant bacterium Rhizobium sp. NBRI2505 sesbania and its drought-sensitive transposon Tn5 mutant. Curr Microbiol 45:368–377

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Funct Plant Biol 28:897–906

    Article  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinaldelli E, Mancuso S (1996) Response of young mycorrhizal and non-mycorrhizal plants of olive tree (Olea europaea L.) to saline conditions. I. Short-term electrophysiological and long-term vegetative salt effects. Adv Hortic Sci 10:126–134

    Google Scholar 

  • Rogers ME, Grieve CM, Shannon MC (2003) Plant growth and ion relations in lucerne (Medicago sativa L.) in response to the combined effects of NaCl and P. Plant Soil 253:187–194

    Article  CAS  Google Scholar 

  • Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272

    Article  Google Scholar 

  • Roychoudhury P, Kaushik BD (1989) Solubilization of Mussoorie rock phosphate by cyanobacteria. Curr Sci 58:569–570

    CAS  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Ruppel S, Franken P, Witzel K (2013) Properties of the halophyte microbiome and their implications for plant salt tolerance. Funct Plant Biol 40:940–951

    Article  CAS  PubMed  Google Scholar 

  • Saber MSM, Zanati MR (1984) Effectiveness of inoculation with silicate bacteria in relation to the potassium content of plants using the intensive cropping technique. Agric Res Rev

    Google Scholar 

  • Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28:1503–1509. https://doi.org/10.1007/s11274-011-0952-7

    Article  CAS  PubMed  Google Scholar 

  • Sagoe CI, Ando T, Kouno K, Nagaoka T (1998) Relative importance of protons and solution calcium concentration in phosphate rock dissolution by organic acids. Soil Sci Plant Nutr 44:617–625

    Article  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Porro C, Rafael R, Soto-Ramírez N, Márquez MC, Montalvo-Rodríguez R, Ventosa A (2009) Description of Kushneria aurantia gen. nov., sp. nov., a novel member of the family Halomonadaceae, and a proposal for reclassification of Halomonas marisflavi as Kushneria marisflavi comb. nov., of Halomonas indalinina as Kushneria indalinina comb. nov. and of Halomonas avicenniae as Kushneria avicenniae comb. nov. Int J Syst Evol Microbiol 59:397–405

    Article  PubMed  CAS  Google Scholar 

  • Sangeeth KP, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spices Aromat Crop 21:118–124

    Google Scholar 

  • Sannazzaro AI, Echeverría M, Albertó EO, Ruiz OA, Menéndez AB (2007) Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiol Biochem 45:39–46

    Article  CAS  PubMed  Google Scholar 

  • Scavino AF, Pedraza RO (2013) The role of siderophores in plant growth-promoting bacteria. In: Bacteria in agrobiology: crop productivity. Springer, pp 265–285

    Google Scholar 

  • Sengupta A, Chaudhuri S (2002) Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza 12:169–174

    Article  PubMed  Google Scholar 

  • Sgroy V, Cassán F, Masciarelli O, Del Papa MF, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381

    Article  CAS  PubMed  Google Scholar 

  • Sha Valli Khan PS, Nagamallaiah GV, Dhanunjay Rao M, Sergeant K, Hausman JF (2014) Chapter 2: Abiotic stress tolerance in plants: insights from proteomics. In: Emerging technologies and management of crop stress tolerance. Academic, San Diego, pp 23–68. https://doi.org/10.1016/B978-0-12-800875-1.00002-8

    Chapter  Google Scholar 

  • Shamseldin A, Werner D (2004) Selection of competitive strains of Rhizobium nodulating Phaseolus vulgaris and adapted to environmental conditions in Egypt, using the gus-reporter gene technique. World J Microbiol Biotechnol 20:377–382

    Article  CAS  Google Scholar 

  • Shamseldin A, Werner D (2005) High salt and high pH tolerance of new isolated Rhizobium etli strains from Egyptian soils. Curr Microbiol 50:11–16

    Article  CAS  PubMed  Google Scholar 

  • Shannon MC, Grieve CM (1998) Tolerance of vegetable crops to salinity. Sci Horticult 78:5–38

    Article  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    Article  CAS  PubMed  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma S, Kulkarni J, Jha B (2016) Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Front Microbiol 7:1600

    PubMed  PubMed Central  Google Scholar 

  • Shedova E, Lipasova V, Velikodvorskaya G, Ovadis M, Chernin L, Khmel I (2008) Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza 53:110–114

    CAS  Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J Plant Growth Regul 31:195–206

    Article  CAS  Google Scholar 

  • Siddikee MA, Chauhan PS, Anandham R, Han G-H, Sa T (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20:1577–1584

    Article  CAS  PubMed  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, Jong Yim W, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Mohammad F, Khan MN (2009) Morphological and physio-biochemical characterization of Brassica juncea L. Czern. & Coss. genotypes under salt stress. J Plant Interact 4:67–80

    Article  CAS  Google Scholar 

  • Sieverding E, da Silva GA, Berndt R, Oehl F (2015) Rhizoglomus, a new genus of the Glomeraceae. Mycotaxon 129:373–386

    Article  Google Scholar 

  • Singh RP, Jha PN (2016) A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant (Triticum aestivum). Front Plant Sci 7:1890

    PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic

    Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snapp S, Koide R, Lynch J (1995) Exploitation of localized phosphorus-patches by common bean roots. Plant Soil 177:211–218

    Article  CAS  Google Scholar 

  • Soleimani M, Akbar S, Hajabbasi MA (2011) Enhancing phytoremediation efficiency in response to environmental pollution stress. Plants Environ 23:10–14

    Google Scholar 

  • Sparks DL, Huang PM (1985) Physical chemistry of soil potassium. In: Potassium in agriculture, pp 201–276

    Google Scholar 

  • Srinivasan R, Yandigeri MS, Kashyap S, Alagawadi AR (2012) Effect of salt on survival and P-solubilization potential of phosphate solubilizing microorganisms from salt affected soils. Saudi J Biol Sci 19:427–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffens D, Sparks DL (1997) Kinetics of nonexchangeable ammonium release from soils. Soil Sci Soc Am J 61:455–462

    Article  CAS  Google Scholar 

  • Stevenson FJ, Cole MA (1999) Cycles of soils: carbon, nitrogen, phosphorus, sulfur, micronutrients. Wiley, Hoboken

    Google Scholar 

  • Sugawara M, Okazaki S, Nukui N, Ezura H, Mitsui H, Minamisawa K (2006) Rhizobitoxine modulates plant-microbe interactions by ethylene inhibition. Biotechnol Adv 24:382–388. https://doi.org/10.1016/j.biotechadv.2006.01.004

    Article  CAS  PubMed  Google Scholar 

  • SzymaÅ„ska S, PÅ‚ociniczak T, Piotrowska-Seget Z, ZÅ‚och M, Ruppel S, Hrynkiewicz K (2016) Metabolic potential and community structure of endophytic and rhizosphere bacteria associated with the roots of the halophyte Aster tripolium L. Microbiol Res 182:68–79

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Robson AD, Dilworth MJ (1990) A split-root experiment shows that iron is required for nodule initiation in Lupinus angustifolius L. New Phytol 115:61–67

    Article  CAS  Google Scholar 

  • Teng S, Liu Y, Zhao L (2010) Isolation, identification and characterization of ACC deaminase-containing endophytic bacteria from halophyte Suaeda salsa. Wei Sheng Wu Xue Bao = Acta Microbiol Sin 50:1503–1509

    CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theunis M (2005) IAA biosynthesis in rhizobia and its potential role in symbiosis. PhD thesis, Universiteit Antwerpen

    Google Scholar 

  • Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP, Arora DK (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47:907

    Article  CAS  Google Scholar 

  • Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304

    Article  CAS  PubMed  Google Scholar 

  • Tributh HV, Boguslawski EV, Lieres AV, Steffens D, Mengel K (1987) Effect of potassium removal by crops on transformation of illitic clay minerals. Soil Sci 143:404–409

    Article  CAS  Google Scholar 

  • Upadhyay SK, Singh DP (2015) Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biol 17:288–293

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay S, Singh D, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr Microbiol 59:489–496. https://doi.org/10.1007/s00284-009-9464-1

    Article  CAS  PubMed  Google Scholar 

  • Uroz S, Calvaruso C, Turpault M-P, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387

    Article  CAS  PubMed  Google Scholar 

  • van Hoorn JW, Katerji N, Hamdy A, Mastrorilli M (2001) Effect of salinity on yield and nitrogen uptake of four grain legumes and on biological nitrogen contribution from the soil. Agric Water Manag 51:87–98. https://doi.org/10.1016/S0378-3774(01)00114-7

    Article  Google Scholar 

  • Van Vuuren DP, Bouwman AF, Beusen AHW (2010) Phosphorus demand for the 1970–2100 period: a scenario analysis of resource depletion. Glob Environ Chang 20:428–439

    Article  Google Scholar 

  • Vassilev N, Fenice M, Federici F (1996) Rock phosphate solubilization with gluconic acid produced by immobilized Penicillium variabile P16. Biotechnol Tech 10:585–588

    Article  CAS  Google Scholar 

  • Venkateswarlu B, Rao AV, Raina P (1984) Evaluation of phosphorus solubilisation by microorganisms isolated from Aridisols. J Indian Soc Soil Sci 32:273–277

    CAS  Google Scholar 

  • Venkateswarlu B, Desai S, Prasad YG (2008) Agriculturally important microorganisms for stressed ecosystems: challenges in technology development and application. In: Khachatourians GG, Arora DK, Rajendran TP, Srivastava AK (eds) Agriculturally important, Microorganisms, vol 1. Academic World, Bhopal, pp 225–246

    Google Scholar 

  • Veresoglou SD, Shaw LJ, Sen R (2011) Glomus intraradices and Gigaspora margarita arbuscular mycorrhizal associations differentially affect nitrogen and potassium nutrition of Plantago lanceolata in a low fertility dune soil. Plant Soil 340:481–490

    Article  CAS  Google Scholar 

  • Vreeland RH (1987) Mechanisms of halotolerance in microorganisms. CRC Crit Rev Microbiol 14:311–356

    Article  CAS  Google Scholar 

  • Waller F et al (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Dodd IC, Belimov AA, Jiang F (2016) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Funct Plant Biol 43:161–172

    Article  CAS  PubMed  Google Scholar 

  • Werner D (1992) Symbiosis of plants and microbes. Chapman & Hall, London

    Google Scholar 

  • Whitelaw MA, Harden TJ, Bender GL (1997) Plant growth promotion of wheat inoculated with Penicillium radicum sp. nov. Soil Res 35:291–300

    Article  Google Scholar 

  • Wild A (1988) Plant nutrients in soil: phosphate. In: Russell’s soil conditions and plant growth

    Google Scholar 

  • Williams A, Ridgway HJ, Norton DA (2013) Different arbuscular mycorrhizae and competition with an exotic grass affect the growth of Podocarpus cunninghamii Colenso cuttings. New For 44:183–195

    Article  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Wu Q-S, Xia R-X, Zou Y-N (2008) Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Eur J Soil Biol 44:122–128

    Article  Google Scholar 

  • Wu Q-S, Zou Y-N, He X-H (2010) Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Plant 32:297–304

    Article  CAS  Google Scholar 

  • Wu Z, Yue H, Lu J, Li C (2012) Characterization of rhizobacterial strain Rs-2 with ACC deaminase activity and its performance in promoting cotton growth under salinity stress. World J Microbiol Biotechnol 28:2383–2393

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr Microbiol 32:67–71

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46:49–54

    Article  CAS  Google Scholar 

  • Yasmin H, Bano A (2011) Isolation and characterization of phosphate solubilizing bacteria from rhizosphere soil of weeds of Khewra salt range and Attock. Pak J Bot 43:1663–1668

    Google Scholar 

  • Yildirim E, Taylor AG (2005) Effect of biological treatments on growth of bean plans under salt stress. Ann Rep Bean Improv Coop 48:176–177

    Google Scholar 

  • Yoon J-H, Choi SH, Lee K-C, Kho YH, Kang KH, Park Y-H (2001) Halomonas marisflavae sp. nov., a halophilic bacterium isolated from the Yellow Sea in Korea. Int J Syst Evol Microbiol 51:1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Yousfi S, Mahmoudi H, Abdelly C, Gharsalli M (2007) Effect of salt on physiological responses of barley to iron deficiency. Plant Physiol Biochem 45:309–314

    Article  CAS  PubMed  Google Scholar 

  • Zacarías JJJ, Altamirano-Hernández J, Cabriales JJP (2004) Nitrogenase activity and trehalose content of nodules of drought-stressed common beans infected with effective (Fix+) and ineffective (Fix−) rhizobia. Soil Biol Biochem 36:1975–1981

    Article  CAS  Google Scholar 

  • Zhang L, Fan J, Ding X, He X, Zhang F, Feng G (2014) Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biol Biochem 74:177–183

    Article  CAS  Google Scholar 

  • Zhou N, Zhao S, Tian CY (2017) Effect of halotolerant rhizobacteria isolated from halophytes on the growth of sugar beet (Beta vulgaris L.) under salt stress. FEMS Microbiol Lett 364. https://doi.org/10.1093/femsle/fnx091

  • Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of Yellow Sea of China. Evid Based Complement Alternat Med 2011

    Google Scholar 

  • Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513

    Article  CAS  Google Scholar 

  • Zwetsloot MJ, Lehmann J, Bauerle T, Vanek S, Hestrin R, Nigussie A (2016) Phosphorus availability from bone char in a P-fixing soil influenced by root-mycorrhizae-biochar interactions. Plant Soil 408:95–105

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We wish to thank the University of Tehran for providing the necessary facilities and funds for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Etesami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Etesami, H., Alikhani, H.A. (2019). Halotolerant Plant Growth-Promoting Fungi and Bacteria as an Alternative Strategy for Improving Nutrient Availability to Salinity-Stressed Crop Plants. In: Kumar, M., Etesami, H., Kumar, V. (eds) Saline Soil-based Agriculture by Halotolerant Microorganisms. Springer, Singapore. https://doi.org/10.1007/978-981-13-8335-9_5

Download citation

Publish with us

Policies and ethics