Skip to main content

Microbial Augmentation of Salt-Affected Soils: Emphasis on Haloalkalitolerant PGPR

  • Chapter
  • First Online:
Microbial Interventions in Agriculture and Environment

Abstract

Food availability is set to be the biggest problem facing humanity over the next 50 years and beyond as the global population is estimated to increase steadily along with escalation in degradation rate of crop lands. Alkalization and salinization of soils have become widespread global issues and have been identified as crucial factors for limiting agricultural crop productivity. Various parameters have been described to characterize salinity and alkalinity of the soils and elucidate its effect on plant growth. This chapter further overviews how conventional physicochemical technologies are ineffective to repair SAS. Hence, a sustainable alternative is to utilize bespoke microbial species with desirable attributes so that salt-affected problem soils could be made suitable for cultivation of agricultural crops. It highlights biological nitrogen fixation (BNF) as well as other desirable plant growth-promoting (PGP) traits such as phytohormone secretion, ACC deaminase activity, solubilization of minerals, and exopolysaccharide production by free-living diazotrophic microbes from alkaline and saline soils and further describes the role of haloalkalitolerant plant growth-promoting rhizobacteria (PGPR) to recoup alkaline saline soils for sustainable mode of agriculture and conservation of environmental quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albacete A, Ghanem ME, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Martínez V, Lutts S, Dodd IC, Pérez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 59:4119–4131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen SE, Grimshaw HM, Parkinson JA, Quarmby CL (1974) Chemical analysis of ecological materials. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Anderson JPE (1982) Soil respiration. In: Page AL (ed) Methods of soil analysis part 2 chemical and microbiological properties. Soil Science Society of America, Madison, pp 837–871

    Google Scholar 

  • Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254

    Article  CAS  PubMed  Google Scholar 

  • Apte SK, Thomas J (1997) Possible amelioration of coastal soil salinity using halotolerant nitrogen-fixing Cyanobacteria. Plant Soil 189:205–211

    Article  CAS  Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315

    Article  CAS  Google Scholar 

  • Artamonova VS, Dits LY, Elizarova TN, Lyutykh IV (2010) Technogenic salinization of soils and their microbiological characterization. Contemp Probl Ecol 3(3):323–330

    Article  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Article  Google Scholar 

  • Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical Comparison. Biotechnol Adv 27:744–752

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162

    CAS  Google Scholar 

  • Baker HM, Anderson BF, Baker EN (2003) Dealing with iron: Common structural principles in proteins that transport iron and heme. Proc Natl Acad Sci USA 100:3579–3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bapurao ND (2012) Potential halotolerant Azospirillum brasilense N-30 as a biofertilizer for saline soils. Acta Biol Indica 1:198–206

    Google Scholar 

  • Barka EA, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    Article  CAS  Google Scholar 

  • Barua S, Tripathi S, Chakraborty A, Ghosh S, Chakrabarti K (2011) Studies on non-symbiotic diazotrophic bacterial populations of coastal arable saline soils of India. Indian J Microbiol 51:369–376

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhadauria S, Sengar RMS, Mohan D, Dhanai CS, Kushwah BS (2010) Sustainable land use planning through utilization of alkaline wasteland by biotechnological intervention. Middle-East J Sci Res 6:580–592

    Google Scholar 

  • Bharti N, Yadav D, Barnawal D, Maji D, Kalra A (2013) Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World J Microbiol Biotechnol 29:379–387

    Article  CAS  PubMed  Google Scholar 

  • Blackwell P, Reithmuller G, Collins M (2009) Biochar application to soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology, vol 1. Earthscan, London, pp 207–226

    Google Scholar 

  • Blaha CAG, Revers LF, Passaglia LMP, Frazzon J, Schrank IS (2000) Characterization of an Azospirillum brasilense Tn5 mutant with enhanced nitrogen fixation. In: Pedrosa FO, Hungria M, Yates G, Newton WE (eds) Nitrogen fixation: from molecules to crop productivity, vol 38. Springer, Dordrecht, pp 93–94

    Chapter  Google Scholar 

  • Blum JS, Bindi AB, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30

    Article  CAS  Google Scholar 

  • Brady N, Weil R (2002) The nature and properties of soils, 13th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis part 2. Chemical and microbiological properties, Madison, pp 595–624

    Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Bull CT, Weller DM, Thomashow LS (1991) Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2–79. Phytopathology 81:954–959

    Article  Google Scholar 

  • Chang P, Gerhardt KE, Huang XD, Yu DM, Glick BR, Gerwing PD, Greenber BM (2014) Plant growth promoting bacteria facilitate the growth of barley and oats in salt impacted soil: implications for phytoremediation of saline soils. Int J Phytoremediation 16:1133–1147

    Article  CAS  PubMed  Google Scholar 

  • Charzyński P, Hulisz P, Bednarek RM (2013) Technogenic soils of Poland. Polish Society of Soil Science, Torun, pp 35–36

    Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S (2007) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58:4245–4255

    Article  CAS  PubMed  Google Scholar 

  • Cho JM, Kim KJ, Chung KY, Hyun S, Baek K (2009) Restoration of saline soil in cultivated land using electrokinetic process. Sep Sci Technol 44:2371–2384

    Article  CAS  Google Scholar 

  • Chowdhury N, Marschner P, Burns R (2011) Response of microbial activity and community structure to decreasing soil osmotic and matric potential. Plant Soil 344:241–254

    Article  CAS  Google Scholar 

  • Cicek N, Cakirlar H (2002) The effect of salinity on some physiological parameters in two maize cultivars. Bulgarian J Plant Physiol 281:66–74

    Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cramer GR (1992) Kinetics of maize leaf elongation: II. Response of a Na-excluding cultivar and a Na-including cultivar to varying Na/Ca salinities. J Exp Bot 43:857–864

    Article  Google Scholar 

  • CSSRI (2015) Vision 2050. ICAR-Central Soil Salinity Research Institute, Karnal

    Google Scholar 

  • Cummings SP (2005) The role and future potential of nitrogen fixing bacteria to boost productivity in organic and low-input sustainable farming systems. Environ Biotechnol 1:1–10

    Google Scholar 

  • Dahlawi S, Naeem A, Rengel Z, Naidu R (2018) Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Sci Total Environ 625:320–335

    Article  PubMed  CAS  Google Scholar 

  • de-Bashan LE, Hernandez JP, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation – A comprehensive evaluation. Appl Soil Ecol 61:171–189

    Article  Google Scholar 

  • Deepa CK, Syed GD, Pandey A (2010) Isolation and characterization of plant growth promoting bacteria from non-rhizospheric soil and their effect on cowpea (Vigna unguiculata (L.) Walp. seedling growth. World J Microbiol Biotechnol 26:1233–1240

    Article  CAS  PubMed  Google Scholar 

  • Delfine S, Alvino A, Villani MC, Loreto F (1999) Restrictions to carbon dioxide conductance and photosynthesis in spinach leaves recovering from salt stress. Plant Physiol 119:1101–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denton MD, Reeve WG, Howieson JG, Coventry DR (2003) Competitive abilities of common field isolates and a commercial strain of Rhizobium leguminosarum bv trifolii for clover nodule occupancy. Soil Biol Biochem 35:1039–1048

    Article  CAS  Google Scholar 

  • Desale P, Patel B, Singh S, Malhotra A, Nawani N (2013) Plant growth promoting properties of Halobacillus sp. and Halomonas sp. in the presence of salinity and heavy metals. J Basic Microbiol 54:781–791

    Article  PubMed  CAS  Google Scholar 

  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428

    Article  CAS  PubMed  Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379

    Article  CAS  Google Scholar 

  • Dugardeyn J, van der Straeten D (2008) Ethylene: fine-tuning plant growth and development by stimulation and inhibition of elongation. Plant Sci 175:59–70

    Article  CAS  Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31(4):861–864

    Article  CAS  Google Scholar 

  • Egamberdieva D (2012) Pseudomonas chlororaphis: a salt-tolerant bacterial inoculant for plant growth stimulation under saline soil conditions. Acta Physiol Plant 34:751–756

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    CAS  PubMed  Google Scholar 

  • Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T, Chebotar V, Tikhonovich I, Kamilova F, Validov SZ, Lugtenberg B (2011) Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fertil Soils 47:197–205

    Article  CAS  Google Scholar 

  • Egamberdieva D, Jabborova D, Wirth S (2013) Alleviation of salt stress in legumes by co-inoculation with Pseudomonas and Rhizobium. In: Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 291–303

    Chapter  Google Scholar 

  • Ehrlich HL, Oremland RS, Zehr JP (2001) Biogeochemical cycles. eLS

    Google Scholar 

  • Elmajdoub B, Marschner P (2013) Salinity reduces the ability of soil microbes to utilise cellulose. Biol Fertil Soils 49:379–386

    Article  CAS  Google Scholar 

  • Esechie HA, Al-Saidi A, Al-Khanjari S (2002) Effect of sodium chloride salinity on seedling emergence in chickpea. J Agron Crop Sci 188:155–160

    Article  Google Scholar 

  • Fernando WGD, Nalkeeran S, Yilan Z (2006) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: Siddiqui ZA (ed) PGPR biocontrol and biofertilization. Springer, Dordrecht, pp 67–109

    Chapter  Google Scholar 

  • Fetter CW (ed) (2001) Applied hydrogeology. Prentice Hall, Upper Saddle River. Supplemental website http://www.appliedhydrogeology.info

  • Fidalgo F, Santos A, Santos I, Salema R (2004) Effects of long-term salt stress on antioxidant defence systems, leaf water relations and chloroplast ultrastructure of potato plants. Ann Appl Biol 145:185–192

    Article  CAS  Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of water stress effects in common bean (Phaseolus vulgaris L.) by co-inoculation Paenibacillus x Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Fitzpatrick RW (2002) Land degradation processes. In: TR MV, Rui L, Walker J, Fitzpatrick RW, Liu C (eds) Regional water and soil assessment for managing sustainable agriculture in China and Australia, ACIAR Monograph, vol 84, pp 119–129

    Google Scholar 

  • Fitzpatrick RW, Boucher SC, Naidu R, Fritsch E (1994) Environmental consequences of soil sodicity. Aust J Soil Res 32:1069–1093

    Article  Google Scholar 

  • Fitzpatrick RW, Rengasamy P, Merry RH, Cox JW (2001) Is dryland soil salinisation reversible? In: National dryland salinity programme (NDSP), Canberra

    Google Scholar 

  • Flexas J, Ortuño MF, Ribas-Carbo M, Diaz-Espejo A, Flórez-Sarasa ID, Medrano H (2007) Mesophyll conductance to CO2 in Arabidopsis thaliana. New Phytol 175:501–511

    Article  CAS  PubMed  Google Scholar 

  • Foley JA (2011) Can we feed the world and sustain the planet? Sci Am 305:60–65

    Article  PubMed  Google Scholar 

  • Forster SM (1990) The role of microorganisms in aggregate formation and soil stabilization: types of aggregation. Arid Land Res Manag 4:85–98

    Google Scholar 

  • Fougere F, Ruduiler D, Streeter G (1991) Effect of salt stress on amino acid, organic acid and carbohydrate composition of roots, bacteroides and cytosol of Alfalfa (Medicago sativa L.). Plant Physiol 96:1228–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanem M, Albacete A, Smigocki AC, Frébort I, Pospíšilová H, Martínez-Andújar C, Pérez-Alfocea F (2011) Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 62:125–140

    Article  CAS  PubMed  Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: Human causes, extent, management and case studies. CABI Publishing, Wallingford

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Adv Biotechnol 28:367–374

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. In: New perspectives and approaches in plant growth-promoting rhizobacteria research. Springer, Dordrecht, pp 329–339

    Chapter  Google Scholar 

  • Gliessman SR (2004) Integrating agroecological processes into cropping systems research. J Crop Improv 11:61–80

    Article  Google Scholar 

  • Gobat JM, Aragno M, Matthey W (2004) The living soil: fundamentals of soil science and soil biology. Science Publishers, Enfield

    Google Scholar 

  • Godfrey ZE, Pax Blamey FC, Colin Asher L (2010) Some observations on the culture of attached groundnut (Arachis hypogaea L.) gynophores in simplified nutrient solutions. African J Plant Sci 4:296–300

    Google Scholar 

  • Goswami D, Dhandhukia P, Patel P, Thakker JN (2014) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169:66–75

    Article  CAS  PubMed  Google Scholar 

  • Grattan SR, Oster JD (2003) Use and reuse of saline-sodic waters for irrigation of crops. J Crop Prod 7:131–162

    Article  Google Scholar 

  • Greenberg BM, Huang XD, Gerwing P, Yu XM, Chang P, Wu SS, Glick B (2008) Phytoremediation of salt impacted soils: greenhouse and the field trials of plant growth promoting rhizobacteria (PGPR) to improve plant growth and salt phytoaccumulation. In: Proceeding of the 33rd AMOP Technical seminar on environmental contamination and response. Environment Canada, Ottawa, pp 627–637

    Google Scholar 

  • Grismer M (1990) Leaching fraction, soil salinity, and drainage efficiency. Calif Agric 44:24–26

    Article  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123

    Article  CAS  PubMed  Google Scholar 

  • Hajkowicz SA, Young MD (2002) Value of returns to land and water and costs of degradation. Final report to the National Land and Water Resources Audit, Policy and Economic Research Unit, CSIRO Land and Water, Folio Ref, 2, p 477

    Google Scholar 

  • Hasnain S, Sabri AN (1997) Growth stimulation of Triticum aestivum seedlings under Cr-stresses by non-rhizospheric Pseudomonas strains. Environ Pollut 97:265–273

    Article  CAS  PubMed  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DP (2000) Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horneck DA, Ellsworth JW, Hopkins BG, Sullivan DM, Stevens RG (2007) Managing salt-affected soils for crop production. PNW 601-E, Oregon State University Extension Service, USA. http://ir.library.oregonstate.edu/concern/administrative_report_or_publications/pr76f371k

  • Jamil M, Lee DB, Jung KY, Ashraf M, Lee SC, Rha ES (2006) Effect of salt (NaCl) stress on germination and early seedling growth of four vegetables species. J Cent Eur Agric 7:273–282

    Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802

    Article  Google Scholar 

  • Jha B, Gontia I, Hartmann A (2012) The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 356:265–277

    Article  CAS  Google Scholar 

  • Kalembasa SJ, Jenkinson DS (1973) A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. J Sci Food Agric 24:1085–1090

    Article  CAS  Google Scholar 

  • Kaushik A, Sethi V (2005) Salinity effects on nitrifying and free diazotrophic bacterial populations in the rhizosphere of rice. Bull Natl Inst Ecol 15:139–144

    Google Scholar 

  • Kendall HW, Pimentel D (1994) Constraints on the expansion of the global food supply. Ambio 23:198–205

    Google Scholar 

  • Kennedy AC (1999) Bacterial diversity in agroecosystems. Agric Ecosyst Environ 74(1):65–76

    Article  Google Scholar 

  • Khosla BK, Gupta RK, Abrol IP (1979) Salt leaching and the effect of gypsum application in a saline-sodic soil. Agric Water Manag 2:193–202

    Article  Google Scholar 

  • Kim S, Raybum AL, Voiqt T, Parrish A, Lee DK (2012) Salinity effects on germination and plant growth of prairie cord grass and switchgrass. Bioenergy Res 5:225–235

    Article  Google Scholar 

  • Kohler J, Caravaca F, Carrasco L, Roldán A (2006) Contribution of Pseudomonas mendocina and Glomus intraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions. Soil Use Manag 22:298–304

    Article  Google Scholar 

  • Kurth E, Cramer GR, Lauchli A, Epstein E (1986) Effects of NaCl and CaC12 on cell enlargement and cell production in cotton roots. Plant Physiol 82:1102–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakhdar A, Rabhi M, Ghnaya T, Montemurro F, Jedidi N, Abdelly C (2009) Effectiveness of compost use in salt-affected soil. J Hazard Mater 15(171):29–37

    Article  CAS  Google Scholar 

  • Lal R (2001) Soil degradation by erosion. Land Degrad Dev 12:519–539

    Article  Google Scholar 

  • Lal R (2015) Restoring soil quality to mitigate soil degradation. Sustainability 7:5875–5895

    Article  CAS  Google Scholar 

  • Laura RD (1974) Effects of neutral salts on carbon and nitrogen mineralisation of organic matter in soil. Plant Soil 41:113–127

    Article  CAS  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Choi JH, Lee HG, Ha TH, Bae JH (2012) Effect of electrode materials on electrokinetic reduction of soil salinity. Sep Sci Technol 47:22–29

    Article  CAS  Google Scholar 

  • Levy GJ (2000) Sodicity. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton, pp 27–63

    Google Scholar 

  • Li XG, Shi XM, Wang DJ, Zhou W (2012) Effect of alkalized magnesic salinity on soil respiration changes with substrate availability and incubation time. Biol Fertil Soils 48:597–602

    Article  CAS  Google Scholar 

  • Liang Y, Si J, Nikolic M, Peng Y, Chen W, Jiang Y (2005) Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Soil Biol Biochem 37:1185–1195

    Article  CAS  Google Scholar 

  • Liu W, Hou J, Wang Q, Ding L, Luo Y (2014) Isolation and characterization of plant growth-promoting rhizobacteria and their effects on phytoremediation of petroleum-contaminated saline-alkali soil. Chemosphere 117:303–308

    Article  CAS  PubMed  Google Scholar 

  • Loganathan P, Nair S (2004) Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 54:1185–1190

    Article  CAS  PubMed  Google Scholar 

  • López-Aguirre JG, Farias-Larios J, Molina-Ochoa J, Aguilar-Espinosa S, Flores-Bello M, González-Ramírez M (2007) Salt leaching process in an alkaline soil treated with elemental sulphur under dry tropic conditions. World J Agric Sci 3:356–362

    Google Scholar 

  • Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  CAS  PubMed  Google Scholar 

  • Ma HC, Fung L, Wang SS, Altman A, Hüttermann A (1997) Photosynthetic response of Populus euphratica to salt stress. For Ecol Manag 93:55–61

    Article  Google Scholar 

  • Makoi JH, Verplancke H (2010) Effect of gypsum placement on the physical chemical properties of a saline sandy loam soil. Asian J Crop Sci 4:556–556

    CAS  Google Scholar 

  • Mandal AK, Sharma RL, Raingh G, Dagar JL (2010) Computerized database on SAS in India. http://krishikosh.egranth.ac.in/bitstream/1/2046527/1/CSSRI249.pdf

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • McBride MB (1994) Environmental chemistry of soils. Oxford University Press/Wiley, New York

    Google Scholar 

  • McNeil RL, Howitt RW, Whitson IR, Chartier AG (1994) Soil survey of the County of Forty Mile No. 8, Alberta. Alberta Research Council. Environmental Research and Engineering Department, Edmonton, AB. Alberta Soil Survey Report (54). http://www.agric.gov.ab.ca/soil/survey-reports/ab54/ab54_report.pdf

  • Meritt KA (2006) Method and system for promoting microbial fixation activity. Australian Patent, WO2006/005100, PCT/AU/2005/000785, pp 1–30

    Google Scholar 

  • Meyer S, Genty B (1998) Mapping intercellular CO2 mole fraction (Ci) in Rosa rubiginosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging: significance of Ci estimated from leaf gas exchange. Plant Physiol 116:947–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JJ, Brierley JA (2011) Solonetzic soils of Canada: Genesis, distribution, and classification. Can J Soil Sci 91:889–902

    Article  CAS  Google Scholar 

  • Minhas PS, Sharma OP (2003) Management of soil salinity and alkalinity problems in India. J Crop Prod 7:181–230

    Article  CAS  Google Scholar 

  • Mulligan CN (2009) Recent advances in the environmental applications of biosurfactants. Curr Opin Colloid Interface Sci 14:372–378

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167(3):645–663

    Article  CAS  PubMed  Google Scholar 

  • Murillo JM, López R, Cabrera E, Martín-Olmedo P (1995) Testing a low-quality urban compost as a fertilizer for arable farming. Soil Use Manag 11:127–131

    Article  Google Scholar 

  • Mythili G, Goedecke J (2016) Economics of land degradation in India. In: Nkonya E, Mirzabaev A, Von Braun J (eds) Economics of land degradation and improvement-A global assessment for sustainable development. Springer, pp 431–469

    Google Scholar 

  • Nabti E, Sahnoune M, Adjrad S, Van Dommelen A, Ghoul M, Schmid M, Hartmann A (2007) A halophilic and osmotolerant Azospirillum brasilense strain from Algerian soil restores wheat growth under saline conditions. Eng Life Sci 7:354–360

    Article  CAS  Google Scholar 

  • Nabti E, Sahnoune M, Ghoul M, Fischer D, Hofmann A, Rothballer M, Hartmann A (2010) Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca. J Plant Growth Regul 29:6–22

    Article  CAS  Google Scholar 

  • Nachtergaele F, Van Velthuizen H, Verelst L, Batjes N, van Engelen V, Petri M, Shi X (2012) Harmonized world soil database. FAO/IIASA/ISRIC/ISS-CAS/JRC, Rome/Italy/Laxenburg

    Google Scholar 

  • Naidu R, Rengasamy P (1993) Ion interactions and constraints to plant nutrition in Australian sodic soils. Aust J Soil Res 31:801–819

    Article  CAS  Google Scholar 

  • Nakade DB, Chonde SG, Pallavi B (2012) Halophilic nitrogen fixing Azotobacter chroococcum N-21 and its use as a biofertilizer for saline soils. J Microbiol Biotechnol Res 2:1017–1023

    Google Scholar 

  • Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296

    Article  CAS  PubMed  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270(45):26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Olsen SR (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate, Circular no. 939. US Department of Agriculture, Washington, DC

    Google Scholar 

  • Oren A (2001) The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations: implications for the functioning of salt lake ecosystems. Hydrobiologia 466:61–72

    Article  CAS  Google Scholar 

  • Ouerghi Z, Cornic G, Roudani M, Ayadi A, Brulfert J (2000) Effect of NaCl on photosynthesis of two wheat species (Triticum durum and T. aestivum) differing in their sensitivity to salt stress. J Plant Physiol 156:335–340

    Article  CAS  Google Scholar 

  • Pandey MM (2009) Country report India-Indian agriculture an introduction. Country report presented in the fourth session of the Technical Committee of APCAEM, held during 1–3 December, 2008 at Chiang Rai, Thailand

    Google Scholar 

  • Pandey KD, Shukla PN, Giri DD, Kashyap AK (2005) Cyanobacteria in alkaline soil and the effect of cyanobacteria inoculation with pyrite amendments on their reclamation. Biol Fertil Soils 41:451–457

    Article  Google Scholar 

  • Patel D, Jha CK, Tank N, Saraf M (2012) Growth enhancement of Chickpea in saline soils using plant growth-promoting Rhizobacteria. Plant Growth Regul 31:53–62

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can J Microbiol 48:635–642

    Article  CAS  PubMed  Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:378–384

    Article  CAS  PubMed  Google Scholar 

  • Peinemann N, Guggenberger G, Zech W (2005) Soil organic matter and its lignin component in surface horizons of salt-affected soils of the Argentinian Pampa. Catena 60:113–128

    Article  CAS  Google Scholar 

  • Pérez-Alfocea F, Albacete A, Ghanem ME, Dodd IC (2010) Hormonal regulation of source–sink relations to maintain crop productivity under salinity: a case study of root-to-shoot signaling in tomato. Funct Plant Biol 37:592–603

    Article  Google Scholar 

  • Pimentel D, Giampietro M (1994) Current Trends Global population, food and the environment. Trends Ecol Evol 9:239

    Article  CAS  PubMed  Google Scholar 

  • Pitman MG, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity: environment–plants–molecules. Kluwer, Dordrecht, pp 3–20

    Google Scholar 

  • Qadir M, Schubert S (2002) Degradation processes and nutrient constraints in sodic soils. Land Degrad Dev 13:275–294

    Article  Google Scholar 

  • Qadir M, Ghafoor A, Murtaza G (2000) Amelioration strategies for saline soils: a review. Land Degrad Dev 11:501–521

    Article  Google Scholar 

  • Qadir M, Ghafoor A, Murtaza G (2001) Use of saline–sodic waters through phytoremediation of calcareous saline–sodic soils. Agric Water Manag 50:197–210

    Article  Google Scholar 

  • Qadir M, Noble AD, Schubert S, Thomas RJ, Arslan A (2006) Sodicity-induced land degradation and its sustainable management: problems and prospects. Land Degrad Dev 17:661–676

    Article  Google Scholar 

  • Qadir M, Oster JD, Schubert S, Noble AD, Sahrawat KL (2007) Phytoremediation of sodic and saline-sodic soils. Adv Agron 96:197–247

    Article  CAS  Google Scholar 

  • Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43:1183–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raheem A, Ali B (2015) Halotolerant rhizobacteria: beneficial plant metabolites and growth enhancement of Triticum aestivum L. in salt-amended soils. Arch Agron Soil Sci 61:1691–1705

    Article  CAS  Google Scholar 

  • Rai TN, Rai KN, Prasad S, Sharma C, Mishra S, Gupta B (2010) Effect of organic amendments, bioinoculants and gypsum on the reclamation and soil chemical properties in sodic soils of Etawah. J Soil Water Conserv 9:197–200

    Google Scholar 

  • Rajput L, Imran A, Mubeen F, Hafeez FY (2013) Salt-tolerant PGPR strain Planococcus rifietoensis promotes the growth and yield of wheat (Triticum aestivum L.) cultivated in saline soil. Pak J Bot 45:1955–1962

    Google Scholar 

  • Ravikumar S, Kathiresan K, Ignatiammal S, Babu Selvam M, Shanthy S (2004) Nitrogen-fixing Azotobacter from mangrove habitat and their utility as marine biofertilizers. J Exp Mar Biol Ecol 312:5–17

    Article  CAS  Google Scholar 

  • Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, De Ley J (1987) Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth). Int J Syst Bacteriol 37:43–51

    Article  Google Scholar 

  • Rekha PD, Lai WA, Arun AB, Young CC (2007) Effect of free and encapsulated Pseudomonas putida CC-FR2-4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic conditions. Bioresour Technol 98:447–451

    Article  CAS  PubMed  Google Scholar 

  • Rengasamy P (2002) Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Anim Prod Sci 42:351–361

    Article  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37:613–620

    Article  Google Scholar 

  • Rengasamy P, Olsson KA (1991) Sodicity and soil structure. Soil Res 29:935–952

    Article  CAS  Google Scholar 

  • Rietz DN, Haynes RJ (2003) Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35:845–854

    Article  CAS  Google Scholar 

  • Romero-Aranda MR, Jurad O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855

    Article  CAS  PubMed  Google Scholar 

  • Rosas SB, Avanzini G, Carlier E, Pasluosta C, Pastor N, Rovera M (2009) Root colonization and growth promotion of wheat and maize by Pseudomonas aurantiaca SR1. Soil Biol Biochem 41:1802–1806

    Article  CAS  Google Scholar 

  • Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28:1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Sadiq M, Hassan G, Mehdi SM, Hussain N, Jamil M (2007) Amelioration of saline-sodic soils with tillage implements and sulfuric acid application. Pedosphere 17:182–190

    Article  CAS  Google Scholar 

  • Sahin U, Eroğlu S, Sahin F (2011) Microbial application with gypsum increases the saturated hydraulic conductivity of saline–sodic soils. Appl Soil Ecol 48(2):247–250

    Article  Google Scholar 

  • Sandhya V, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Sangal SP (1991) Pricing of irrigation waters in India. Econ Polit Wkly 24:2645–2651

    Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Sardinha M, Müller T, Schmeisky H, Joergensen RG (2003) Microbial performance in soils along a salinity gradient under acidic conditions. Appl Soil Ecol 23:237–244

    Article  Google Scholar 

  • Schnürer J, Rosswall T (1982) Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl Environ Microbiol 43:1256–1261

    PubMed  PubMed Central  Google Scholar 

  • Setia R, Marschner P, Baldock J, Chittleborough D (2010) Is CO2 evolution in saline soils affected by an osmotic effect and calcium carbonate? Biol Fertil Soils 46:781–792

    Article  CAS  Google Scholar 

  • Shabala S, Shabala L, Volkenburgh EV (2003) Effect of calcium on root development and root ion fluxes in salinised barley seedlings. Funct Plant Biol 30:507–514

    Article  CAS  PubMed  Google Scholar 

  • Shainberg I, Keren R, Frenkel H (1982) Response of sodic soils to gypsum and calcium chloride application. Soil Sci Soc Am J 46:113–117

    Article  CAS  Google Scholar 

  • Shamseldin A, Werner D (2005) High salt and high pH tolerance of new isolated Rhizobium etli strains from Egyptian soils. Curr Microbiol 50:11–16

    Article  CAS  PubMed  Google Scholar 

  • Shelar RD (2014) Studies on some aspects of nitrogen fixation by microbes from alkaline and saline soils. PhD Thesis, North Maharashtra University, Jalgaon, India

    Google Scholar 

  • Shelar RD, Dandi ND, Dandi BN, Chaudhari AB (2010) Isolation and screening of di-nitrogen fixing microbes from extreme habitat. J Adv Sci Technol 13:1–7

    Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Mohammad F, Khan MN (2009) Morphological and physio-biochemical characterization of Brassica juncea L. Czern. and Coss genotypes under salt stress. J Plant Interact 4:67–80

    Article  CAS  Google Scholar 

  • Singh KN, Charath R (2001) Salinity Tolerance. In: Reynolds MP, McNab A (eds) Application of physiology in wheat breeding. CIMMYT, Mexico, pp 101–110

    Google Scholar 

  • Singh AL, Singh PL (1989) Nitrogen fixation in Indian rice fields (Azolla and blue-green algae). Agro-Botanical Publishers, Bikaner

    Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Sohan D, Jasoni R, Zajicek J (1999) Plant-water relations of NaCl and calcium-treated sunflower plants. Environ Exp Bot 42:105–111

    Article  CAS  Google Scholar 

  • Sorokin ID, Kravchenko IK, Doroshenko EV, Boulygina ES, Zadorina EV, Tourova TP, Sorokin DY (2008) Haloalkaliphilic diazotrophs in soda solonchak soils. FEMS Microbiol Ecol 65:425–433

    Article  CAS  PubMed  Google Scholar 

  • Sorvari J, Antikainen R, Kosola ML, Hokkanen P, Haavisto T (2009) Eco-efficiency in contaminated land management in Finland–Barriers and development needs. J Environ Manag 90:1715–1727

    Article  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Okon Y (2009) Plant growth-promoting actions of rhizobacteria. Adv Bot Res 51:283–320

    Article  CAS  Google Scholar 

  • Sprent JI, Sprent P (1990) Nitrogen fixing organisms: pure and applied aspects. Chapman and Hall, London

    Book  Google Scholar 

  • State of the Environment: India (2001) Land degradation, part III. http://envfor.nic.in/sites/default/files/soer/2001/soer.html

  • Suárez R, Wong A, Ramírez M, Barraza A, Orozco MDC, Cevallos MA, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by over expressing trehalose-6-phosphate synthase in rhizobia. Mol Plant-Microbe Interact 21:958–966

    Article  PubMed  CAS  Google Scholar 

  • Sultana N, Ikeda T, Itoh R (1999) Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environ Exp Bot 42:211–220

    Article  CAS  Google Scholar 

  • Szabolcs I, Lal R, Blum WH (1998) Salt build up as a factor of soil degradation. In: Lal R, Blum WH, Valentine C, Stewart BA (eds) Methods for assessment of soil degradation. CRC press, Boca Raton, pp 253–264

    Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202

    Article  CAS  PubMed  Google Scholar 

  • Tanji KK (2002) Salinity in the soil environment. In: Läuchli A, Lüttge U (eds) Salinity: environment–plants–molecules. Kluwer, Dordrecht, pp 21–51

    Google Scholar 

  • Thatoi H, Chandra BB, Kanti DT, Ranjan MR (2012) Microbial biodiversity in mangrove soils of Bhitarkanika, Odisha, India. Int J Environ Biol 2:50–58

    Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal CS, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • Trombly J (1994) Electrochemical remediation takes to the field. Environ Sci Technol 28:289A–291A

    Article  CAS  Google Scholar 

  • Turan S, Cornish K, Kumar S (2012) Salinity tolerance in plants: breeding and genetic engineering. Aust J Crop Sci 6:1337

    Google Scholar 

  • Unsal T, Ok S (2001) Description of characteristics of humic substances from different waste materials. Bioresour Technol 78:239–242

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21:214–222

    Article  CAS  Google Scholar 

  • Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol 14:605–611

    Article  CAS  PubMed  Google Scholar 

  • Valiela I, Teal JM, Persson NY (1976) Production and dynamics of experimentally enriched salt marsh vegetation: belowground biomass. Limnol Oceanogr 21:245–252

    Article  Google Scholar 

  • van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Walworth J (2012) Using gypsum and other calcium amendments in southwestern soils. http://hdl.handle.net/10150/246053

    Google Scholar 

  • Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (1993) Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ 16:579–585

    Article  CAS  Google Scholar 

  • Wang C, Knill E, Glick BR, Défago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907

    Article  CAS  PubMed  Google Scholar 

  • Warrence NJ, Bauder JW, Pearson KE (2002) Basics of salinity and sodicity effects on soil physical properties. Department of Land Resources and Environmental Sciences, Montana State University-Bozeman, Bozeman, pp 1–29

    Google Scholar 

  • Wei Y, Xu X, Tao H, Wang P (2006) Growth performance and physiological response in the halophyte Lycium barbarum grown at salt-affected soil. Ann Appl Biol 149:263–269

    Article  CAS  Google Scholar 

  • Wichern J, Wichern F, Joergensen RG (2006) Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137:100–108

    Article  CAS  Google Scholar 

  • William FB (2000) Compost quality standards and guidelines. Final report by Woods End Research Laboratories for the New York State Association of Recyclers. pp 6–10. http://citeseerx.ist.psu.edu/messages/downloadsexceeded.html

  • Wirthensohn T, Schoeberl P, Ghosh U, Fuchs W (2009) Pilot plant experiences using physical and biological treatment steps for the remediation of groundwater from a former MGP site. J Hazard Mater 163:43–52

    Article  CAS  PubMed  Google Scholar 

  • Wollenweber B, Zechmeister-Boltenstern S (1989) Nitrogen fixation and nitrogen assimilation in a temperate saline ecosystem. Bot Acta 102:96–105

    Article  CAS  Google Scholar 

  • Wu SS (2009) Enhanced phytoremediation of salt-impacted soils using plant growth-promoting rhizobacteria (PGPR). PhD Thesis, University of Waterloo, Ontario, Canada

    Google Scholar 

  • Xoconostle-Cazares B, Ramirez-Ortega FA, Flores-Elenes L, Ruiz-Medrano R (2010) Drought tolerance in crop plants. Am J Plant Physiol 5:241–256

    Article  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10(12):615–620

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Chong J, Li C, Kim C, Shi D, Wang D (2007) Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant Soil 294:263–276

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Wang Z, Li Y, Niu Y, Du M, He X, Xu P (2010) Metabolic versatility of halotolerant and alkaliphilic strains of Halomonas isolated from alkaline black liquor. Bioresour Technol 101:6778–6784

    Article  CAS  PubMed  Google Scholar 

  • Yildrim E, Donmez MF, Turan M (2008) Use of bioinoculants in ameliorative effects on radish plants under salinity stress. J Plant Nutr 31:2059–2074

    Article  CAS  Google Scholar 

  • Young A (1994) Land degradation in South Asia: its severity, causes and effects upon the people. FAO, Rome

    Google Scholar 

  • Yuan BC, Li ZZ, Liu H, Gao M, Zhang YY (2007) Microbial biomass and activity in SAS under arid conditions. Appl Soil Ecol 35:319–328

    Article  Google Scholar 

  • Yue H, Mo W, Li C, Zheng Y, Li H (2007) The salt stress relief and growth promotion effect of Rs-5 on cotton. Plant Soil 297:139–145

    Article  CAS  Google Scholar 

  • Zahran HH, Ahmad MS, Afkar EA (1995) Isolation and characterization of nitrogen-fixing moderate halophilic bacteria from saline soils of Egypt. J Basic Microbiol 35:269–275

    Article  Google Scholar 

  • Zavarzina DG, Kolganova TV, Boulygina ES, Kostrikina NA, Tourova TP, Zavarzin GA (2006) Geoalkalibacter ferrihydriticus gen. nov. sp. nov., the first alkaliphilic representative of the family Geobacteraceae, isolated from a soda lake. Microbiology 75:673–682

    Article  CAS  Google Scholar 

  • Zhilina TN, Garnova ES, Tourova TP, Kostrikina NA, Zavarzin GA (2001) Amphibacillus fermentum sp. nov. and Amphibacillus tropicus sp. nov., new alkaliphilic, facultatively anaerobic, saccharolytic bacilli from lake Magadi. Microbiology 70:711–722

    Article  CAS  Google Scholar 

  • Zhilina TN, Kevbrin VV, Tourova TP, Lysenko AM, Kostrikina NA, Zavarzin GA (2005) Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal region. Microbiology 74:557–566

    Article  CAS  Google Scholar 

  • Zhong HL, Lauchli A (1994) Spatial-distribution of solutes, K, Na, Ca and their deposition rates in the growth zone of primary cotton roots: effects of NaCl and CaCl2. Planta 194:34–41

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (P.M.G.) acknowledges the fellowship from the University Grants Commission, New Delhi, under its UGC-RGNF-ST (Rajiv Gandhi National Fellowship for higher education of ST students) scheme. Financial support from University Grants Commission, New Delhi, and Department of Sciences and Technology, New Delhi, for strengthening the research facilities at the School under SAP–DRS (F.4-23/2015/DRS-II [SAPII]) and FIST (SR/FST/LSI-433/2010) programs, respectively, is gratefully acknowledged.

This research did not receive any specific grant from funding agencies in the public, commercial, or nonprofit sectors.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gavit Pavankumar, M., Chaudhari Ambalal, B., Shelar Rajendra, D., Dandi Navin, D. (2019). Microbial Augmentation of Salt-Affected Soils: Emphasis on Haloalkalitolerant PGPR. In: Singh, D., Gupta, V., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-8383-0_9

Download citation

Publish with us

Policies and ethics