Skip to main content

The Short-Term Inhalation Study (STIS) as a Range Finder and Screening Tool in a Tiered Grouping Strategy

  • Chapter
  • First Online:
In Vivo Inhalation Toxicity Screening Methods for Manufactured Nanomaterials

Abstract

The rat short-term inhalation study (STIS; 5 days exposure, 6 h/day; approx. 3-week postexposure observation) allows assessing test material-induced early respiratory tract effects, the progression or reversibility of effects, pulmonary particle deposition, and potential test material translocation to extra-pulmonary tissues and the evolvement of systemic effects. This chapter provides details on the STIS study design focusing on aerosol characterization, performance of bronchoalveolar lavage in half a lung and preparation of the other half for histopathology. Five case studies (CSs) exemplify how the rat STIS can be used for initial safety assessments, e.g., within the previously published Decision-making framework for the grouping and testing of nanomaterials. This tiered framework allows grouping nanomaterials as soluble (CS 1: CuO, ZnO); high aspect ratio nanomaterials (CS 2: multiwall carbon nanotubes); passive (CS 3: BaSO4, ZrO2, graphite nanoplatelets); or active (CS 4: CeO2, TiO2). CS 5 addresses different amorphous SiO2 that are either soluble, passive, or active. In conclusion, the rat STIS and 28-day/90-day inhalation toxicity studies reveal comparable effects, and the rankings of no-observed adverse effect concentrations are very similar. Compared with 28-day and 90-day inhalation toxicity studies (OECD Test Guidelines 412 and 413), the rat STIS requires fewer animals and its duration is considerably shorter. Thereby, this test serves the 3Rs principle to replace, reduce, and refine animal testing. If 28-day and 90-day inhalation toxicity studies are mandatory for regulatory purposes, the rat STIS is a suitable range-finding study to select appropriate concentrations for the longer-term studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arts JH, Muijser H, Duistermaat E, Junker K, Kuper C. Five day inhalation toxicity study of three types of synthetic amorphous silicas in Wistar rats and post-exposure evaluations for up to 3 months. Food Chem Toxicol. 2007;45(10):1856–67.

    Article  CAS  PubMed  Google Scholar 

  2. Landsiedel R, Ma-Hock L, Hofmann T, Wiemann M, Strauss V, Treumann S, Wohlleben W, Gröters S, Wiench K, van Ravenzwaay B. Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials. Part Fibre Toxicol. 2014;11:16.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ma-Hock L, Burkhardt S, Strauss V, Gamer AO, Wiench K, van Ravenzwaay B, Landsiedel R. Development of a short-term inhalation test in the rat using nano-titanium dioxide as a model substance. Inhal Toxicol. 2009;21(2):102–18.

    Article  CAS  PubMed  Google Scholar 

  4. Ma-Hock L, Hofmann T, Landsiedel R, van Ravenzwaay B. A short-term inhalation study protocol: designed for testing of toxicity and fate of nanomaterials. Methods Mol Biol. 2014;1199:207–12.

    Article  CAS  PubMed  Google Scholar 

  5. OECD. Organisation for Economic Co-operation and Development. Guideline for testing of chemicals no. 412. Subacute inhalation toxicity: 28-day study. Paris: OECD; 2017.

    Google Scholar 

  6. OECD. Organisation for Economic Co-operation and Development. Guideline for testing of chemicals no. 413. Subchronic inhalation toxicity: 90-day study. Paris: OECD; 2017.

    Google Scholar 

  7. Russell WMS, Burch RL. The principles of humane experimental technique. London: Methuen; 1959. Reprinted by UFAW, 1992, England, 238 pp.

    Google Scholar 

  8. Braakhuis HM, Cassee FR, Fokkens PH, de la Fonteyne LJ, Oomen AG, Krystek P, de Jong WH, van Loveren H, Park MV. Identification of the appropriate dose metric for pulmonary inflammation of silver nanoparticles in an inhalation toxicity study. Nanotoxicology. 2016;10(1):63–73.

    CAS  PubMed  Google Scholar 

  9. Dekkers S, Ma-Hock L, Lynch I, Russ M, Miller MR, Schins RPF, Keller J, Römer I, Küttler K, Strauss V, de Jong WH, Landsiedel R, Cassee FR. Differences in the toxicity of nanomaterials after inhalation can be explained by lung deposition, animal species and nanoforms. The case of cerium dioxide. Inhal Toxicol. 2018;30(7-8):273–86.

    Article  CAS  PubMed  Google Scholar 

  10. Wohlleben W, Meier MW, Vogel S, Landsiedel R, Cox G, Hirth S, Tomović Ž. Elastic CNT-polyurethane nanocomposite: synthesis, performance and assessment of fragments released during use. Nanoscale. 2013;5(1):369–80.

    Article  CAS  PubMed  Google Scholar 

  11. Wohlleben W, Kuhlbusch T, Lehr C-M, Schnekenburger J. Safety of nanomaterials along their lifecycle: release, exposure and human hazards. Hoboken, NJ: Taylor & Francis; 2014. ISBN 978-1-46-656786-3, 472 pp.

    Book  Google Scholar 

  12. Wohlleben W, Driessen MD, Raesch S, Schaefer UF, Schulze C, Von Vacano B, Vennemann A, Wiemann M, Ruge CA, Platsch H, Mues S, Ossig R, Tomm JM, Schnekenburger J, Kuhlbusch TAJ, Luch A, Lehr C-M, Haase H. Influence of agglomeration and specific lung lining lipid/protein interaction on short-term inhalation toxicity. Nanotoxicology. 2016;10(7):970–80.

    Article  CAS  PubMed  Google Scholar 

  13. Wohlleben W, Mielke J, Bianchin A, Ghanem A, Freiberger H, Rauscher H, Gemeinert M, Hodoroaba VD. Reliable nanomaterial classification of powders using the volume-specific surface area method. J Nanopart Res. 2017;19(2):61.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wohlleben W, Waindok H, Daumann B, Werle K, Drum M, Egenolf H. Composition, respirable fraction and dissolution rate of 24 stone wool MMVF with their binder. Part Fibre Toxicol. 2017;14:29.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gandon A, Werle K, Neubauer N, Wohlleben W. Surface reactivity measurements as required for grouping and read-across: an advanced FRAS protocol. J Phys Conf Ser. 2017;838:012033.

    Article  Google Scholar 

  16. Ma-Hock L, Gamer AO, Landsiedel R, Leibold E, Frechen T, Sens B, Linsenbuehler M, van Ravenzwaay B. Generation and characterization of test atmospheres with nanomaterials. Inhal Toxicol. 2007;19:833–48.

    Article  CAS  PubMed  Google Scholar 

  17. Mangum J, Bermudez E, Sar M, Everitt J. Osteopontin expression in particle-induced lung disease. Exp Lung Res. 2004;30(7):585–98.

    Article  CAS  PubMed  Google Scholar 

  18. Ma-Hock L, Strauss V, Treumann S, Küttler K, Wohlleben W, Hofmann T, Gröters S, Wiench K, van Ravenzwaay B, Landsiedel R. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black. Part Fibre Toxicol. 2013;10:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Henderson RF, Driscoll KE, Harkema JR, Lindenschmidt RC, Chang I-Y, Maples KR, Barr EB. A comparison of the inflammatory response of the lung to inhaled versus instilled particles in F-344 rats. Fundam Appl Toxicol. 1995;24:183–97.

    Article  CAS  PubMed  Google Scholar 

  20. Vennemann A, Alessandrini F, Wiemann M. Differential effects of surface functionalized zirconium oxide nanoparticles on alveolar makrophages, rat lung and a mouse model. Nanomaterials. 2017;7:280.

    Article  PubMed Central  Google Scholar 

  21. Wiemann M, Vennemann A, Blaske F, Sperling M, Karst U. Silver nanoparticle in the lung: toxic effects and focal accumulation of silver in remote organs. Nanomaterials. 2017;7:441.

    Article  PubMed Central  Google Scholar 

  22. Strauss V, Ma-Hock L, Rey Moreno MC, Groeters S, Landsiedel R, Wiemann M, van Ravenzwaay B. Validation of an appropriate lavage procedure of the left pulmonary lobe and accompanying histopathology in the frame of the draft OECD TG 413. In: The toxicologist: supplement to toxicological sciences, 156 (1), Society of Toxicology, 2017. Abstract no. 2385.

    Google Scholar 

  23. Arts JH, Hadi M, Irfan MA, Keene AM, Kreiling R, Lyon D, Maier M, Michel K, Petry T, Sauer UG, Warheit D, Wiench K, Wohlleben W, Landsiedel R. A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regul Toxicol Pharmacol. 2015;71(2 Suppl):S1–27.

    Article  CAS  PubMed  Google Scholar 

  24. Arts JH, Irfan MA, Keene AM, Kreiling R, Lyon D, Maier M, Michel K, Neubauer N, Petry T, Sauer UG, Warheit D, Wiench K, Wohlleben W, Landsiedel R. Case studies putting the decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) into practice. Regul Toxicol Pharmacol. 2016;76:234–61.

    Article  PubMed  Google Scholar 

  25. OECD. Organisation for Economic Co-operation and Development list of manufactured nanomaterials and list of endpoints for phase one of the sponsorship programme for the testing of manufactured nanomaterials: revision. Series on the safety of manufactured nanomaterials. ENV/JM/MONO(2010)46. Paris: OECD; 2010.

    Google Scholar 

  26. Bellmann B. DRF, 5-day nose-only inhalation toxicity study of Z-COTE® HP1 in Wistar WU rats (DRF study) 02 N 09 515 (Draft report). Hannover: Fraunhofer ITEM; 2009. Study owner: Cefic, Bruxelles.

    Google Scholar 

  27. Gosens I, Cassee FR, Zanella M, Manodori L, Brunelli A, Costa AL, Bokkers BG, de Jong WH, Brown D, Hristozov D, Stone V. Organ burden and pulmonary toxicity of nano-sized copper (II) oxide particles after short-term inhalation exposure. Nanotoxicology. 2016;10(8):1084–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Braakhuis HM, Gosens I, Krystek P, Boere JA, Cassee FR, Fokkens PH, Post JA, van Loveren H, Park MV. Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles. Part Fibre Toxicol. 2014;11:49.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Creutzenberg O. 14-Day nose-only inhalation toxicity study of Z-COTE HP1 in Wistar WU rats. 02 G 09 005. Hannover: Fraunhofer ITEM; 2013. Study owner: Cefic, Bruxelles.

    Google Scholar 

  30. Seiffert J, Buckley A, Leo B, Martin NG, Zhu J, Dai R, Hussain F, Guo C, Warren J, Hodgson A, Gong J, Ryan MP, Zhang JJ, Porter A, Tetley TD, Gow A, Smith R, Chung KF. Pulmonary effects of inhalation of spark-generated silver nanoparticles in Brown-Norway and Sprague-Dawley rats. Respir Res. 2016;17(1):85.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Morimoto Y, Izumi H, Yoshiura Y, Tomonaga T, Oyabu T, Myojo T, Kawai K, Yatera K, Shimada M, Kubo M, Yamamoto K, Kitajima S, Kuroda E, Kawaguchi K, Sasaki T. Evaluation of pulmonary toxicity of zinc oxide nanoparticles following inhalation and intratracheal instillation. Int J Mol Sci. 2016;17(8):1241.

    Article  PubMed Central  Google Scholar 

  32. Creutzenberg O. 3-Month nose-only inhalation toxicity study of Z-COTE HP1 in Wister WU rats. 02 G 10 024. Hannover: Fraunhofer ITEM; 2013. Study owner: Cefic, Bruxelles.

    Google Scholar 

  33. Ahamed M, Akhtar MJ, Alhadlaq HA, Alrokayan SA. Assessment of the lung toxicity of copper oxide nanoparticles: current status. Nanomedicine (Lond). 2015;10(15):2365–77.

    Article  CAS  Google Scholar 

  34. WHO. WHO air quality guidelines for Europe. 2nd ed. Geneva: WHO; 2002. Available at http://www.euro.who.int/__data/assets/pdf_file/0005/74732/E71922.

  35. Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci. 2006;92:5–22.

    Article  CAS  PubMed  Google Scholar 

  36. Donaldson K, Murphy FA, Duffin R, Poland CA. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol. 2010;7:5.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Donaldson K, Murphy F, Schinwald A, Duffin R, Poland CA. Identifying the pulmonary hazard of high aspect ratio nanoparticles to enable their safety-by-design. Nanomedicine. 2011;6:143–56.

    Article  CAS  PubMed  Google Scholar 

  38. Duke KS, Bonner JC. Mechanisms of carbon nanotube-induced pulmonary fibrosis: a physicochemical characteristic perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;10:e1498. https://doi.org/10.1002/wnan.1498.

    Article  CAS  PubMed  Google Scholar 

  39. Poulsen SS, Saber AT, Williams A, Andersen O, Købler C, Atluri R, Pozzebon ME, Mucelli SP, Simion M, Rickerby D, Mortensen A, Jackson P, Kyjovska ZO, Mølhave K, Jacobsen NR, Jensen KA, Yauk CL, Wallin H, Halappanavar S, Vogel U. MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol. 2015;284:16–32.

    Article  CAS  PubMed  Google Scholar 

  40. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol. 2008;3(7):423–8.

    Article  CAS  PubMed  Google Scholar 

  41. Fukushima S, Kasai T, Umeda Y, Ohnishi M, Sasaki T, Matsumoto M. Carcinogenicity of multi-walled carbon nanotubes: challenging issue on hazard assessment. J Occup Health. 2018;60(1):10–30.

    Article  CAS  PubMed  Google Scholar 

  42. Kobayashi N, Izumi H, Morimoto Y. Review of toxicity studies of carbon nanotubes. J Occup Health. 2017;59(5):394–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chernova T, Murphy FA, Galavotti S, Sun XM, Powley IR, Grosso S, Schinwald A, Zacarias-Cabeza J, Dudek KM, Dinsdale D, Le Quesne J, Bennett J, Nakas A, Greaves P, Poland CA, Donaldson K, Bushell M, Willis AE, MacFarlane M. Long-fiber carbon nanotubes replicate asbestos-induced mesothelioma with disruption of the tumor suppressor gene Cdkn2a (Ink4a/Arf). Curr Biol. 2017;27(21):3302–14. e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma-Hock L, Treumann S, Strauss V, Brill S, Luizi F, Mertler M, Wiench K, Gamer AO, van Ravenzwaay B, Landsiedel R. Inhalation toxicity of multi-wall carbon nanotubes in rats exposed for 3 months. Toxicol Sci. 2009;112:468–81.

    Article  CAS  PubMed  Google Scholar 

  45. Pothmann D, Simar S, Schuler D, Dony E, Gaering S, Le Net JL, Okazaki Y, Chabagno JM, Bessibes C, Beausoleil J, Nesslany F, Régnier JF. Lung inflammation and lack of genotoxicity in the comet and micronucleus assays of industrial multiwalled carbon nanotubes Graphistrength(©) C100 after a 90-day nose-only inhalation exposure of rats. Part Fibre Toxicol. 2015;12:21.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Régnier J-F, Pothmann-Krings D, Simar S, Dony E, Le Net J-L, Beausoleil J. Graphistrength© C100 multiwalled carbon nanotubes (MWCNT): thirteen-week inhalation toxicity study in rats with 13- and 52-week recovery periods combined with comet and micronucleus assays. J Phys Conf Series. 2017;838:012030.

    Article  Google Scholar 

  47. Pauluhn J. Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci. 2010;113:226–42.

    Article  CAS  PubMed  Google Scholar 

  48. Kasai T, Umeda Y, Ohnishi M, Mine T, Kondo H, Takeuchi T, Matsumoto M, Fukushima S. Lung carcinogenicity of inhaled multi-walled carbon nanotube in rats. Part Fibre Toxicol. 2016;13(1):53.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sargent LM, Porter DW, Staska LM, Hubbs AF, Lowry DT, Battelli L, Siegrist KJ, Kashon ML, Mercer RR, Bauer AK, Chen BT, Salisbury JL, Frazer D, McKinney W, Andrew M, Tsuruoka S, Endo M, Fluharty KL, Castranova V, Reynolds SH. Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol. 2014;11:3.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kroll A, Dierker C, Rommel C, Hahn D, Wohlleben W, Schulze-Isfort C, Göbbert C, Voetz M, Hardinghaus F, Schnekenburger J. Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Part Fibre Toxicol. 2011;8:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hofmann T, Ma-Hock L, Strauss V, Treumann S, Rey Moreno M, Neubauer N, Wohlleben W, Gröters S, Wiench K, Veith U, Teubner W, van Ravenzwaay B, Landsiedel R. Comparative short-term inhalation toxicity of five organic diketopyrrolopyrrole pigments and two inorganic iron-oxide-based pigments. Inhal Toxicol. 2016;7:1–17.

    Google Scholar 

  52. Bräu M, Ma-Hock L, Hesse C, Nicoleau L, Strauss V, Treumann S, Wiench K, Landsiedel R, Wohlleben W. Nanostructured calcium silicate hydrate seeds accelerate concrete hardening: a combined assessment of benefits and risks. Arch Toxicol. 2012;86(7):1077–87.

    Article  PubMed  Google Scholar 

  53. Ma-Hock L, Landsiedel R, Wiench K, Geiger D, Strauss V, Gröters S, van Ravenzwaay B, Gerst M, Wohlleben W, Scherer G. Short-term rat inhalation study with aerosols of acrylic ester-based polymer dispersions containing a fraction of nanoparticles. Int J Toxicol. 2012;31:46–57.

    Article  CAS  PubMed  Google Scholar 

  54. Kim YH, Jo MS, Kim JK, Shin JH, Baek JE, Park HS, An HJ, Lee JS, Kim BW, Kim HP, Ahn KH, Jeon K, Oh SM, Lee JH, Workman T, Faustman EM, Yu IJ. Short-term inhalation study of graphene oxide nanoplates. Nanotoxicology. 2018;1:1–15.

    Google Scholar 

  55. Konduru N, Keller J, Ma-Hock L, Gröters S, Landsiedel R, Donaghey TC, Brain JD, Wohlleben W, Molina RM. Biokinetics and effects of barium sulfate nanoparticles. Part Fibre Toxicol. 2014;11:55.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Schwotzer D, Ernst H, Schaudien D, Kock H, Pohlmann G, Dasenbrock C, Creutzenberg O. Effects from a 90-day inhalation toxicity study with cerium oxide and barium sulfate nanoparticles in rats. Part Fibre Toxicol. 2017;14:23.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Schwotzer D, Niehof M, Schaudien D, Kock H, Hansen T, Dasenbrock C, Creutzenberg O. Cerium oxide and barium sulfate nanoparticle inhalation affects gene expression in alveolar epithelial cells type II. J Nanobiotechnol. 2018;16(1):16.

    Article  Google Scholar 

  58. Cullen RT, Tran CL, Buchanan D, Davis JMG, Searl A, Jones AD, Donaldson K. Inhalation of poorly soluble particles. Differences in inflammatory response and clearance during exposure. Inhal Toxicol. 2000;12:1089–111.

    Article  CAS  PubMed  Google Scholar 

  59. Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD, Donaldson K. Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal Toxicol. 2000;12:1113–26.

    Article  CAS  PubMed  Google Scholar 

  60. Kim JK, Shin JH, Lee JS, Hwang JH, Lee JH, Baek JE, Kim TG, Kim BW, Kim JS, Lee GH, Ahn K, Han SG, Bello D, Yu IJ. 28-Day inhalation toxicity of graphene nanoplatelets in Sprague-Dawley rats. Nanotoxicology. 2016;10(7):891–901.

    Article  CAS  PubMed  Google Scholar 

  61. Reuzel PG, Bruijntjes JP, Feron VJ, Woutersen RA. Subchronic inhalation toxicity of amorphous silicas and quartz dust in rats. Food Chem Toxicol. 1991;29:341–54.

    Article  CAS  PubMed  Google Scholar 

  62. Johnston CJ, Driscoll KE, Finkelstein JN, Baggs RF, O’Reilly MA, Carter J, Gelein R, Oberdörster G. Pulmonary chemokine and mutagenic responses in rats after subchronic inhalation of amorphous and crystalline silica. Toxicol Sci. 2000;56(2):405–13.

    Article  CAS  PubMed  Google Scholar 

  63. Bermudez E, Mangum JB, Wong BA, Asgharian B, Hex PM, Warhead DB, Everett JI. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci. 2004;77(2):347–57.

    Article  CAS  PubMed  Google Scholar 

  64. Heinrich U, Fuhst R, Rittinghausen S, Creutzenberg O, Bellmann B, Koch W, Levsen K. Chronic inhalation exposure of Wistar rats and two different strains of mice to diesel exhaust, carbon black, and titanium dioxide. Inhal Toxicol. 1995;7:533–56.

    Article  CAS  Google Scholar 

  65. Disdier C, Chalansonnet M, Gagnaire F, Gaté L, Cosnier F, Devoy J, Saba W, Lund AK, Brun E, Mabondzo A. Brain inflammation, blood brain barrier dysfunction and neuronal synaptophysin decrease after inhalation exposure to titanium dioxide nano-aerosol in aging rats. Sci Rep. 2017;7(1):12196.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Oyabu T, Myojo T, Lee BW, Okada T, Izumi H, Yoshiura Y, Tomonaga T, Li YS, Kawai K, Shimada M, Kubo M, Yamamoto K, Kawaguchi K, Sasaki T, Morimoto Y. Biopersistence of NiO and TiO2 nanoparticles following intratracheal instillation and inhalation. Int J Mol Sci. 2017;18(12):2757.

    Article  PubMed Central  Google Scholar 

  67. Keller J, Wohlleben W, Ma-Hock L, Strauss V, Gröters S, Küttler K, Wiench K, Herden C, Oberdörster G, van Ravenzwaay B, Landsiedel R. Time course of lung retention and toxicity of inhaled particles: short-term exposure to nano-ceria. Arch Toxicol. 2014;88(11):2033–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gosens I, Mathijssen LE, Bokkers BG, Muijser H, Cassee FR. Comparative hazard identification of nano- and micro-sized cerium oxide particles based on 28-day inhalation studies in rats. Nanotoxicology. 2014;8(6):643–53.

    Article  CAS  PubMed  Google Scholar 

  69. Morimoto Y, Izumi H, Yoshiura Y, Tomonaga T, Oyabu T, Myojo T, Kawai K, Yatera K, Shimada M, Kubo M, Yamamoto K, Kitajima S, Kuroda E, Kawaguchi K, Sasaki T. Pulmonary toxicity of well-dispersed cerium oxide nanoparticles following intratracheal instillation and inhalation. J Nanopart Res. 2015;17(11):442.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Shin SH, Lim CH, Kim YS, Lee YH, Kim SH, Kim JC. Twenty-eight-day repeated inhalation toxicity study of nano-sized lanthanum oxide in male sprague-dawley rats. Environ Toxicol. 2017;32(4):1226–40.

    Article  CAS  PubMed  Google Scholar 

  71. Kim YS, Lim CH, Shin SH, Kim JC. Twenty-eight-day repeated inhalation toxicity study of nano-sized neodymium oxide in male Sprague-Dawley rats. Toxicol Res. 2017;33(3):239–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Elder A, Gelein R, Finkelstein JN, Driscoll KE, Harkema J, Oberdörster G. Effects of subchronically inhaled carbon black in three species. Retention kinetics, lung inflammation and histopathology. Toxicol Sci. 2005;88(2):614–29.

    Article  CAS  PubMed  Google Scholar 

  73. Lee KP, Trochimowicz HJ, Reinhardt CF. Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years. Toxicol Appl Pharmacol. 1985;79:179–92.

    Article  CAS  PubMed  Google Scholar 

  74. Nikula KJ, Snipes MB, Barr EB, Griffith WC, Henderson RF, Mauderly JL. Comparative pulmonary toxicities and carcinogenicities of chronically inhaled diesel exhaust and carbon black in F344 rats. Fundam Appl Toxicol. 1995;25:80–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Groeters S, Ernst H, Ma-Hock L, Strauss V, Landsiedel R, Wiench K, van Ravenzwaay B. Long-term inhalation study with nano barium sulfate: unexpected morphological findings and lung-burden after 12 months of exposure. In: The Toxicologist: Supplement to Toxicological Sciences, 156(1), Society of Toxicology, 2017. Abstract no. 1328.

    Google Scholar 

  76. Hadjimichael OC, Brubaker RE. Evaluation of an occupational respiratory exposure to a zirconium-containing dust. J Occup Med. 1981;23(8):543–7.

    CAS  PubMed  Google Scholar 

  77. Marcus RL, Turner S, Cherry NM. A study of lung function and chest radiographs in men exposed to zirconium compounds. Occup Med (Lond). 1996;46(2):109–13.

    Article  CAS  Google Scholar 

  78. Klein CL, Wiench K, Wiemann M, Ma-Hock L, van Ravenzwaay B, Landsiedel R. Hazard identification of inhaled nanomaterials: making use of short-term inhalation studies. Arch Toxicol. 2012;86(7):1137–51.

    Article  CAS  PubMed  Google Scholar 

  79. Wiemann M, Vennemann A, Sauer UG, Wiench K, Ma-Hock L, Landsiedel R. An alveolar macrophage assay for predicting the short-term inhalation toxicity of nanomaterials. J Nanobiotechnol. 2016;14:16.

    Article  Google Scholar 

  80. Van Ravenzwaay B, Landsiedel R, Fabian E, Burkhardt S, Strauss V, Ma-Hock L. Comparing fate and effects of three particles of different surface properties: nano-TiO2, pigmentary TiO2 and quartz. Toxicol Lett. 2009;186:152–9.

    Article  PubMed  Google Scholar 

  81. Ma-Hock L, Brill S, Wohlleben W, Farias PM, Chaves CR, Tenório DP, Fontes A, Santos BS, Landsiedel R, Strauss V, Treumann S, Ravenzwaay B. Short term inhalation toxicity of a liquid aerosol of CdS/Cd(OH)2 core shell quantum dots in male Wistar rats. Toxicol Lett. 2012;208(2):115–24.

    Article  CAS  PubMed  Google Scholar 

  82. Ma-Hock L, Farias PM, Hofmann T, Andrade AC, Silva JN, Arnaud TM, Wohlleben W, Strauss V, Treumann S, Chaves CR, Gröters S, Landsiedel R, van Ravenzwaay B. Short term inhalation toxicity of a liquid aerosol of glutaraldehyde-coated CdS/Cd(OH)2 core shell quantum dots in rats. Toxicol Lett. 2014;225(1):20–6.

    Article  CAS  PubMed  Google Scholar 

  83. Kwon S, Yang YS, Yang HS, Lee J, Kang MS, Lee B, Lee K, Song CW. Nasal and pulmonary toxicity of titanium dioxide nanoparticles in rats. Toxicol Res. 2012;28(4):217–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Greim H, Ziegler-Skylakakis K. Risk assessment for biopersistent granular particles. Inhal Toxicol. 2007;19(Suppl 1):199–204.

    Article  CAS  PubMed  Google Scholar 

  85. Creutzenberg O, Pohlmann G, Hansen T, Schuchardt S, Ernst H, Tillmann T, Schaudien D. CEFIC-LRI N1 project: inhalation toxicity of a synthetic amorphous silica (SAS) in rats. In: The toxicologist: supplement to toxicological sciences, 138 (1), Society of Toxicology, 2014. Abstract no. 600.

    Google Scholar 

  86. Shin JH, Jeon K, Kim JK, Kim Y, Jo MS, Lee JS, Baek JE, Park HS, An HJ, Park JD, Ahn K, Oh SM, Yu IJ. Subacute inhalation toxicity study of synthetic amorphous silica nanoparticles in Sprague-Dawley rats. Inhal Toxicol. 2017;29(12–14):567–76.

    Article  CAS  PubMed  Google Scholar 

  87. Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26:62–9.

    Article  Google Scholar 

  88. Wiemann M, Sauer UG, Vennemann A, Bäcker S, Keller J-G, Ma-Hock L, Wohlleben W, Landsiedel R. In vitro and in vivo short-term pulmonary toxicity of differently sized colloidal amorphous SiO2. Nanomaterials. 2018;8:160.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

Dr. med. vet. Ursula G. Sauer (Scientific Consultancy—Animal Welfare, Germany) was hired as scientific writer of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Wiench .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wiench, K., Ma-Hock, L. (2019). The Short-Term Inhalation Study (STIS) as a Range Finder and Screening Tool in a Tiered Grouping Strategy. In: Takebayashi, T., Landsiedel, R., Gamo, M. (eds) In Vivo Inhalation Toxicity Screening Methods for Manufactured Nanomaterials. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-8433-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8433-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8432-5

  • Online ISBN: 978-981-13-8433-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics