Skip to main content

Diversity in Type III Secreting Systems (T3SSs) in Legume-Rhizobium Symbiosis

  • Chapter
  • First Online:
Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications

Abstract

During nodule development, at least three sets of signals are exchanged between a legume host and its rhizobial partner. Apart from flavonoid and nod boxes, the third set of products are proteins exported by the type three secretion system (T3SS), which are necessary for continued infection thread development. The presence of active T3SS and its control of nodulation have been observed in Bradyrhizobium japonicum USDA110, Sinorhizobium fredii USDA257, Rhizobium sp. NGR234. However, the absence of active T3SS in the genomes of Rhizobium leguminosarum and Sinorhizobium meliloti argues against these effectors being modulators of nodulation. It is likely that alternative modulators exist, such as surface polysaccharides, which have similar or complementary roles to those proposed for effector proteins. Whether a secretion system facilitates symbiosis depends on both the legume and the bacterium, similar to what is seen in plant-pathogen interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abby SS, Rocha EP (2012) The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genet 8(9):e1002983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfano JR, Charkowski AO, Deng WL, Badel JL, Petnicki-Ocwieja T, van Dijk K et al (2000) The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc Natl Acad Sci U S A 97:4856–4861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C, Capela D et al (2008) Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res 18:1472–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annapurna K, Krishnan H (2003) Molecular aspects of soybean cultivar specific nodulation by Sinorhizobium fredii USDA257. Ind J Exp Biol 41:1114–1123

    CAS  Google Scholar 

  • Ausmees N, Kobayashi H, Deakin WJ, Marie C, Krishnan HB, Broughton WJ et al (2004) Characterization of NopP, a type III secreted effector of Rhizobium sp. strain NGR234. J Bacteriol 186:4774–4780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barret M, Egan F, O’Gara F (2013) Distribution and diversity of bacterial secretion systems across metagenomic datasets. Environ Microbiol Rep 5(1):117–126

    Article  CAS  PubMed  Google Scholar 

  • Bartsev AV, Deakin WJ, Boukli NM, McAlvin CB, Stacey G, Malnoë P, Broughton WJ, Staehelin C (2004) NopL, an effector protein of Rhizobium sp. NGR234 thwarts activation of plant defense reactions. Plant Physiol 134:871–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48

    Article  CAS  PubMed  Google Scholar 

  • Brencic A, Winans SC (2005) Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 69:155–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broughton WJ, Hanin M, Relic B, Kopcinska J, Golinowski W, Simsek S, Ojanen-Reuhs T, Reuhs B, Marie C, Kobayashi H, Bordogna B, Le Quere A, Jabbouri S, Fellay R, Perret X, Deakin WJ (2006) Flavonoid-inducible modifications to Rhamnan O antigens are necessary for rhizobium sp. strain NGR234-legume symbioses. J Bacteriol 188(10):3654–3663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkinshaw BJ, Strynadka NC (2014) Assembly and structure of the T3SS. Biochim Biophys Acta 1843:1649–1663

    Article  CAS  PubMed  Google Scholar 

  • Dai WJ, Zeng Y, Xie ZP, Staehelin C (2008) Symbiosis promoting and deleterious effects of NopT, a novel type 3 effector of rhizobium sp. NGR234. J Bacteriol 190(14):5101–5110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Antuono AL et al (2008) Defects in rhizobial cyclic glucan and lipo-polysaccharide synthesis alter legume gene expression during nodule development. Mol Plant Microbe Interact 21:50–60

    Article  CAS  PubMed  Google Scholar 

  • de Lyra MC, Lopez-Baena FJ, Madinabeitia N, Vinardell JM, Espuny Mdel R, Cubo MT et al (2006) Inactivation of the Sinorhizobium fredii HH103 rhcJ gene abolishes nodulation outer proteins (Nops) secretion and decreases the symbiotic capacity with soybean. Int Microbiol 9:125–133

    Google Scholar 

  • Deakin WJ, Broughton WJ (2009) Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol 7:312–320

    Article  CAS  PubMed  Google Scholar 

  • Deane JE, Cordes FS, Roversi P, Johnson S, Kenjale R, Picking WD, Picking WL, Lea SM, Blocker A (2006) Expression, purification, crystallization and preliminary crystallographic analysis of MxiH, a subunit of the Shigella flexneri type III secretion system needle. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:302–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demers JP, Habenstein B, Loquet A, Kumar Vasa S, Giller K, Becker S, Baker D, Lange A, Sgourakis NG (2014) High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy. Nat Commun 5:4976

    Article  CAS  PubMed  Google Scholar 

  • Fauvart M, Verstraeten N, Dombrecht B, Venmans R, Beullens S, Heusdens C et al (2009) Rhizobium etli HrpW is a pectin-degrading enzyme and differs from phyto-pathogenic homologues in enzymically crucial tryptophan and glycine residues. Microbiology 155:3045–3054

    Article  CAS  PubMed  Google Scholar 

  • Foultier B, Troisfontaines P, Müller S, Opperdoes FR, Cornelis GR (2002) Characterization of the ysa pathogenicity locus in the chromosome of Yersinia enterocolitica and phylogeny analysis of type III secretion systems. J Mol Evol 55:37–51

    Article  CAS  PubMed  Google Scholar 

  • Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387:394–401

    Article  CAS  PubMed  Google Scholar 

  • Gazi AD, Sarris PF, Fadouloglou VE, Charova SN, Mathioudakis N, Panopoulos NJ et al (2012) Phylogenetic analysis of a gene cluster encoding an additional, rhizobial-like type III secretion system that is narrowly distributed among Pseudomonas syringae strains. BMC Microbiol 12:188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González V, Santamaría RI, Bustos P, Hernández-González I, Medrano-Soto A, Moreno-Hagelsieb G et al (2006) The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci U S A 103:3834–3839

    Article  PubMed  PubMed Central  Google Scholar 

  • Göttfert M, Röthlisberger S, Kündig C, Beck C, Marty R, Hennecke H (2001) Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J Bacteriol 183:1405–1412

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison MJ (1998) Development of the arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 1:360–365

    Article  CAS  PubMed  Google Scholar 

  • He SY, Nomura K, Whittam TS (2004) Type III protein secretion mechanism in mammalian and plant pathogens. Biochim Biophys Acta 1694:181–206

    Article  CAS  PubMed  Google Scholar 

  • Hempel J, Zehner S, Göttfert M, Patschkowski T (2009) Analysis of the secretome of the soybean symbiont Bradyrhizobium japonicum. J Biotechnol 140:51–58

    Article  CAS  PubMed  Google Scholar 

  • Hotson A, Chosed R, Shu H, Ort K, Mudgett MB (2003) Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta. Mol Microbiol 50:377–389

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Huang H, Cheng X, Shu X, White AP, Stavrinides J, Köster W, Zhu G, Zhao Z, Wang Y (2017) A global survey of bacterial type III secretion systems and their effectors. Environ Microbiol 19(10):3879–3895

    Article  CAS  PubMed  Google Scholar 

  • Hubber A, Vergunst AC, Sullivan JT, Hooykaas PJJ, Ronson CW (2004) Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol Microbiol 54:561–574

    Article  CAS  PubMed  Google Scholar 

  • Hubber AM, Sullivan JT, Ronson CW (2007) Symbiosis-induced cascade regulation of the Mesorhizobium loti R7A VirB/D4 type IV secretion system. Mol Plant Microbe Interaction 20(3):255–261

    Article  CAS  Google Scholar 

  • Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62(2):379–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang G, Krishnan HB (2000) Sinorhizobium fredii USDA257, a cultivar- specific soybean symbiont, carries two copies of y4yA and y4yB, two open reading frames those are located in a region that encodes the type III protein secretion system. Mol Plant Microbe Interact 13:1010–1014

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Guerrero I, Perez-Montano F, Medina C, Ollero FJ, Lopez-Baena FJ (2015) NopC is a Rhizobium-specific type 3 secretion system effector secreted by Sinorhizobium (Ensifer) fredii HH103. PLoS One 10:e0142866. https://doi.org/10.1371/journal.pone.0142866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jones KM et al (2008) Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant. Proc Natl Acad Sci U S A 105:704–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kambara K, Ardissone S, Kobayashi H, Saad MM, Schumpp O, Broughton WJ, Deakin WJ (2009) Rhizobia utilize homologues of pathogenic effector proteins during symbiosis. Mol Microbiol 71:92–106

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K et al (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S et al (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197

    Article  PubMed  Google Scholar 

  • Kim WS, Krishnan HB (2014) A nopA deletion mutant of Sinorhizobium fredii USDA257, a soybean symbiont, is impaired in nodulation. Curr Microbiol 68:239–246

    Article  CAS  PubMed  Google Scholar 

  • Kimbrel JA, Thomas WJ, Jiang Y, Creason AL, Thireault CA, Sachs JL et al (2013) Mutualistic co-evolution of type III effector genes in Sinorhizobium fredii and Bradyrhizobium japonicum. PLoS Pathog 9:e1003204

    Article  PubMed  PubMed Central  Google Scholar 

  • Kistner C, Parniske M (2002) Evolution of signal transduction in intracellular symbiosis. Trends Plant Sci 7:511–518

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Naciri-Graven Y, Broughton WJ, Perret X (2004) Flavonoids induce temporal shifts in gene-expression of nod-box controlled loci in Rhizobium sp. NGR234. Mol Microbiol 51:335–347

    Article  CAS  PubMed  Google Scholar 

  • Krause A, Doerfel A, Göttfert M (2002) Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum. Mol Plant Microbe Interact 15:1228–1235

    Article  CAS  PubMed  Google Scholar 

  • Krishnan HB, Pueppke SG (1993) Flavonoid inducers of nodulation genes stimulate Rhizobium fredii USDA257 to export proteins into the environment. Mol Plant Microbe Interact 6:107–113

    Article  CAS  PubMed  Google Scholar 

  • Krishnan HB, Kuo C-I, Pueppke SG (1995) Elaboration of flavonoid-induced proteins by the nitrogen-fixing soybean symbiont rhizobium fredii is regulated by both nodD1 and nodD2, and is dependent on the cultivar-specificity locus, nolXWBTUV. Microbiology 141(9):2245–2251

    Article  CAS  Google Scholar 

  • Krishnan HB, Lorio J, Kim WS, Jiang G, Kim KY, DeBoer M et al (2003) Extracellular proteins involved in soybean cultivar-specific nodulation are associated with pilus-like surface appendages and exported by a type III protein secretion system in Sinorhizobium fredii USDA257. Mol Plant Microbe Interact 16:617–625

    Article  CAS  PubMed  Google Scholar 

  • Kvitko BH, Ramos AR, Morello JE, Oh HS, Collmer A (2007) Identification of harpins in Pseudomonas syringae pv. Tomato DC3000, which are functionally similar to HrpK1 in promoting translocation of type III secretion system effectors. J Bact 189:8059–8072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Tian CF, Chen WF, Wang L, Sui XH, Chen WX (2013) High-resolution transcriptomic analyses of Sinorhizobium sp. NGR234 bacteroids in determinate nodules of Vigna unguiculata and indeterminate nodules of Leucaena leucocephala. PLoS ONE 8:e70531. https://doi.org/10.1371/journal.pone.0070531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindeberg M, Myers CR, Collmer A, Schneider DJ (2008) Roadmap to new virulence determinants in Pseudomonas syringae: insights from comparative genomics and genome organization. Mol Plant Microbe Interact 21:685–700

    Article  CAS  PubMed  Google Scholar 

  • López-Baena FJ, Monreal JA, Pérez-Montaño F, Guasch-Vidal B, Bellogín RA, Vinardell JM et al (2009) The absence of Nops secretion in Sinorhizobium fredii HH103 increases GmPR1 expression in Williams soybean. Mol Plant Microbe Interact 22:1445–1454

    Article  CAS  PubMed  Google Scholar 

  • López-Baena FJ, Vinardell JM, Pérez-Montaño F, Crespo-Rivas JC, Bellogín RA, EspunyMdel R et al (2008) Regulation and symbiotic significance of nodulation outer proteins secretion in Sinorhizobium fredii HH103. Microbiology 154:1825–1836

    Article  CAS  PubMed  Google Scholar 

  • Lorio JC, Chronis D, Krishnan HB (2006) Y4xP, an open reading frame located in a type III protein secretion system locus of Sinorhizobium fredii USDA257 and USDA191, encodes cysteine synthase. Mol Plant Microbe Interact 19:635–643

    Article  CAS  PubMed  Google Scholar 

  • Margaret I, Becker A, Blom J, Bonilla I, Goesmann A, Göttfert M et al (2011) Symbiotic properties and first analyses of the genomic sequence of the fast growing model strain Sinorhizobium fredii HH103 nodulating soybean. J Biotechnol 155:11–19

    Article  CAS  PubMed  Google Scholar 

  • Marie C, Deakin WJ, Viprey V, Kopciñska J, Golinowski W, Krishnan HB et al (2003) Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234. Mol Plant Microbe Interact 16:743–751

    Article  CAS  PubMed  Google Scholar 

  • Marie C, Broughton WJ, Deakin WJ (2001) Rhizobium type III secretion systems: legume charmers or alarmers? Curr Opin Plant Biol 4(4):336–342

    Article  CAS  PubMed  Google Scholar 

  • Marie C, Deakin WJ, Ojanen-Reuhs T, Diallo E, Reuhs B, Broughton WJ et al (2004) TtsI, a key regulator of Rhizobium species NGR234 is required for typeIII-dependent protein secretion and synthesis of rhamnose-rich polysaccharides. Mol Plant Microbe Interact 17:958–966

    Article  CAS  PubMed  Google Scholar 

  • McDonald C, Vacratsis PO, Bliska JB, Dixon JE (2003) The Yersinia virulence factor YopM forms a novel protein complex with two cellular kinases. J Biol Chem 278:18514–18523

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HP, Ratu STN, Yasuda M, Göttfert M, Okazaki S (2018) InnB, a novel type III effector of Bradyrhizobium elkanii USDA61, controls symbiosis with Vigna species. Front Microbiol 9:3155. https://doi.org/10.3389/fmicb.2018.03155

    Article  PubMed  PubMed Central  Google Scholar 

  • Nimchuk Z, Marois E, Kjemtrup S, Leister RT, Katagiri F, Dangl JL (2000) Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several type III effector proteins from Pseudomonas syringae. Cell 101:353–363

    Article  CAS  PubMed  Google Scholar 

  • Orth K, Xu Z, Mudgett MB, Bao ZQ, Palmer LE, Bliska JB, Mangel WF, Staskawicz B, Dixon JE (2000) Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290:1594–1597

    Article  CAS  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Perret X, Freiberg C, Rosenthal A, Broughton WJ, Fellay R (1999) High- resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234. Mol Microbiol 32:415–425

    Article  CAS  PubMed  Google Scholar 

  • Perret X, Kobayashi H, Collado-Vides J (2003) Regulation of expression of symbiotic genes in Rhizobium sp. NGR234. Indian J Exp Biol 41:1101–1113

    CAS  PubMed  Google Scholar 

  • Piromyou P, Songwattana P, Teamtisong K et al (2019) Mutualistic co-evolution of T3SSs during the establishment of symbiotic relationships between Vigna radiata and Bradyrhizobium. MicrobiologyOpen:e781. https://doi.org/10.1002/mbo3.781

    Article  CAS  PubMed Central  Google Scholar 

  • Rodrigues JA, López-Baena FJ, Ollero FJ, Vinardell JM, Espuny MR, Bellogín RA et al (2007) NopM and NopD are rhizobial nodulation outer proteins: identification using LC-MALDI and LC-ESI with a monolithic capillary column. J Proteome Res 6:1029–1037

    Article  CAS  PubMed  Google Scholar 

  • Rohde JR, Breitkreutz A, Chenal A, Sansonetti PJ, Parsot C (2007) Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 1:77–83

    Article  CAS  PubMed  Google Scholar 

  • Saad MM, Kobayashi H, Marie C, Brown IR, Mansfield JW, Broughton WJ, Deakin WJ (2005) NopB, a type III secreted protein of rhizobium sp. strain NGR234, is associated with pilus-like surface appendages. J Bacteriol 187:1173–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saad MM, Staehelin C, Broughton WJ, Deakin WJ (2008) Protein-protein interactions within type III secretion system dependent pili of rhizobium sp. strain NGR234. J Bacteriol 190:750–754

    Article  CAS  PubMed  Google Scholar 

  • Saad MM, Crèvecoeur M, Masson-Boivin C, Perret X (2012) The type 3 protein secretion system of Cupriavidus taiwanensis strain lmg19424 compromises symbiosis with Leucaena leucocephala. Appl Environ Microbiol 78:7476–7479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez C, Iannino F, Deakin WJ, Ugalde RA, Lepek VC (2009) Characterization of the Mesorhizobium loti MAFF303099 type-three protein secretion system. Mol Plant Microbe Interact 22:519–528

    Article  CAS  PubMed  Google Scholar 

  • Schechter LM, Guenther J, Olcay EA, Jang SC, Krishnan HB (2010) Translocation of NopP by Sinorhizobium fredii USDA257 into Vigna unguiculata root nodules. Appl Environ Microbiol 76:3758–3761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schirrmeister J, Friedrich L, Wenzel M, Hoppe M, Wolf C, Göttfert M et al (2011) Characterization of the self-cleaving effector protein NopE1 of Bradyrhizobium japonicum. J Bacteriol 193:3733–3739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmeisser C, Liesegang H, Krysciak D, Bakkou N, LeQuéré A, Wollherr A et al (2009) Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems. Appl Environ Microbiol 75:4035–4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senthilkumar M, Swarnalakshmi K, Annapurna K (2017) Exopolysaccharide from Rhizobia: production and role in symbiosis. In: Hansen AP, Choudhary DK, Agrawal PK, Varma A (eds) Rhizobium biology and biotechnology. Springers, Cham, pp 257–292

    Chapter  Google Scholar 

  • Setubal JC, Wood D, Burr T, Farrand S, Godman B, Goodner B et al (2009) The genomics of Agrobacterium: insights into its pathogenicity, biocontrol and evolution. In: Jackson R (ed) Plant pathogenic bacteria: genomics and molecular biology. Caister Academic Press, Norfolk, pp 91–112

    Google Scholar 

  • Skorpil P, Saad MM, Boukli NM, Kobayashi H, Ares-Orpel F, Broughton WJ, Deakin WJ (2005) NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii. Mol Microbiol 57:1304–1317

    Article  CAS  PubMed  Google Scholar 

  • Slater SC, Goldman BS, Goodner B, Setubal JC, Farrand SK, Nester EW et al (2009) Genome sequences of three Agrobacterium biovars help elucidate the evolution of multi-chromosome genomes in bacteria. J Bacteriol 191:2501–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Songwattana P, Noisangiam R, Teamtisong K, Prakamhang J, Teulet A, Tittabutr P, Piromyou P, Boonkerd N, Giraud E, Teaumroong N (2017) Type 3 secretion system (T3SS) of Bradyrhizobium sp. DOA9 and its roles in legume symbiosis and rice endophytic association. Front Microbiol 8:1810

    Article  PubMed  PubMed Central  Google Scholar 

  • Spaink HP (2000) Root nodulation and infection factors produced by Rhizobial bacteria. Annu Rev Microbiol 54(1):257–288

    Article  CAS  PubMed  Google Scholar 

  • Streit WR, Schmitz RA, Perret X, Staehelin C, Deakin WJ, Raasch C et al (2004) An evolutionary hotspot: the pNGR234b replicons of Rhizobium sp. strain NGR234. J Bacteriol 186:535–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Süss C, Hempel J, Zehner S, Krause A, Patschkowski T, Göttfert M (2006) Identification of genistein-inducible and type III-secreted proteins of Bradyrhizobium japonicum. J Biotechnol 126(1):69–77

    Article  CAS  PubMed  Google Scholar 

  • Tampakaki AP, Skandalis N, Gazi AD, Bastaki MN, Sarris PF, Charova SN et al (2010) Playing the Harp: evolution of our understanding of hrp/hrc genes. Annu Rev Phytopathol 48:347–370

    Article  CAS  PubMed  Google Scholar 

  • Troisfontaines P, Cornelis GR (2005) Type III secretion: more systems than you think. Physiology 20:326–339

    Article  CAS  PubMed  Google Scholar 

  • Tseng TT, Tyler BM, Setubal JC (2009) Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol 9(Suppl.1):S2. https://doi.org/10.1186/1471-2180-9-S1-S2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viprey V, DelGreco A, Golinowski W, Broughton WJ, Perret X (1998) Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol Microbiol 28:1381–1389

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Huang H, Sun M, Zhang Q, Guo D (2012) T3DB: an integrated database for bacterial type III secretion system. BMC Bioinform 13:66

    Article  CAS  Google Scholar 

  • Wassem R, Kobayashi H, Kambara K, LeQuéré A, Walker GC, Broughton WJ et al (2008) TtsI regulates symbiotic genes in Rhizobium species NGR234 by binding to tts boxes. Mol Microbiol 68:736–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidner S, Becker A, Bonilla I, Jaenicke S, Lloret J, Margaret I et al (2012) Genome sequence of the soybean symbiont Sinorhizobium fredii HH103. J Bacteriol 194:1617–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzel M, Friedrich L, Göttfert M, Zehner S (2010) The type III secreted protein NopE1 affects symbiosis and exhibits a calcium-dependent auto cleavage activity. Mol Plant Microbe Interact 23:124–129

    Article  CAS  PubMed  Google Scholar 

  • Wooldridge K (2009) Bacterial secreted proteins: secretory mechanisms and role in pathogenesis. Caister Academic Press, Poole

    Google Scholar 

  • Yang Y, Zhao J, Morgan RL, Ma W, Jiang T (2010) Computational prediction of type III secreted proteins from Gram-negative bacteria. BMC Bioinform 11(Suppl.1):S47

    Article  CAS  Google Scholar 

  • Zehner S, Schober G, Wenzel M, Lang K, Göttfert M (2008) Expression of the Bradyrhizobium japonicum type III secretion system in legume nodules and analysis of the associated tts box promoter. Mol Plant Microbe Interact 21:1087–1093

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Chen XJ, Lu HB, Xie ZP, Staehelin C (2011) Functional analysis of the type 3 effector nodulation outer protein L (NopL) from Rhizobium sp. NGR234: symbiotic effects, phosphorylation, and interference with mitogen-activated protein kinase signaling. J Biol Chem 286:32178–32187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Senthilkumar, M., Swarnalakshmi, K., Annapurna, K. (2019). Diversity in Type III Secreting Systems (T3SSs) in Legume-Rhizobium Symbiosis. In: Satyanarayana, T., Das, S., Johri, B. (eds) Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-8487-5_4

Download citation

Publish with us

Policies and ethics